When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Anomaly detection - Wikipedia

    en.wikipedia.org/wiki/Anomaly_detection

    ELKI is an open-source Java data mining toolkit that contains several anomaly detection algorithms, as well as index acceleration for them. PyOD is an open-source Python library developed specifically for anomaly detection. [56] scikit-learn is an open-source Python library that contains some algorithms for unsupervised anomaly detection.

  3. Isolation forest - Wikipedia

    en.wikipedia.org/wiki/Isolation_forest

    Isolation Forest is an algorithm for data anomaly detection using binary trees.It was developed by Fei Tony Liu in 2008. [1] It has a linear time complexity and a low memory use, which works well for high-volume data.

  4. List of datasets in computer vision and image processing

    en.wikipedia.org/wiki/List_of_datasets_in...

    Pictures of objects. Detailed object outlines marked. 9146 Images Classification, object recognition 2003 [27] [28] F. Li et al. Caltech-256 Large dataset of images for object classification. Images categorized and hand-sorted. 30,607 Images, Text Classification, object detection 2007 [29] [30] G. Griffin et al. COYO-700M Image–text-pair dataset

  5. Data mining - Wikipedia

    en.wikipedia.org/wiki/Data_mining

    Anomaly detection (outlier/change/deviation detection) – The identification of unusual data records, that might be interesting or data errors that require further investigation due to being out of standard range. Association rule learning (dependency modeling) – Searches for relationships between variables. For example, a supermarket might ...

  6. Change detection - Wikipedia

    en.wikipedia.org/wiki/Change_detection

    In statistical analysis, change detection or change point detection tries to identify times when the probability distribution of a stochastic process or time series changes. In general the problem concerns both detecting whether or not a change has occurred, or whether several changes might have occurred, and identifying the times of any such ...

  7. Local outlier factor - Wikipedia

    en.wikipedia.org/wiki/Local_outlier_factor

    In anomaly detection, the local outlier factor (LOF) is an algorithm proposed by Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng and Jörg Sander in 2000 for finding anomalous data points by measuring the local deviation of a given data point with respect to its neighbours.

  8. Albumentations - Wikipedia

    en.wikipedia.org/wiki/Albumentations

    This process helps improve the performance of machine learning models by providing a more diverse set of training examples. Built on top of OpenCV , a widely used computer vision library, Albumentations provides high-performance implementations of various image processing functions.

  9. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Each file represents a single experiment and contains a single anomaly. The dataset represents a multivariate time series collected from the sensors installed on the testbed. There are two markups for Outlier detection (point anomalies) and Changepoint detection (collective anomalies) problems 30+ files (v0.9) CSV Anomaly detection