Search results
Results From The WOW.Com Content Network
In mathematics, specifically in calculus and complex analysis, the logarithmic derivative of a function f is defined by the formula ′ where ′ is the derivative of f. [1] Intuitively, this is the infinitesimal relative change in f ; that is, the infinitesimal absolute change in f, namely f ′ , {\displaystyle f',} scaled by the current ...
It can also be useful when applied to functions raised to the power of variables or functions. Logarithmic differentiation relies on the chain rule as well as properties of logarithms (in particular, the natural logarithm, or the logarithm to the base e) to transform products into sums and divisions into subtractions.
The identities of logarithms can be used to approximate large numbers. Note that log b (a) + log b (c) = log b (ac), where a, b, and c are arbitrary constants. Suppose that one wants to approximate the 44th Mersenne prime, 2 32,582,657 −1. To get the base-10 logarithm, we would multiply 32,582,657 by log 10 (2), getting 9,808,357.09543 ...
For example, the logarithm of 1000 to base 10 is 3, because 1000 is 10 to the 3 rd power: 1000 = 10 3 = 10 × 10 × 10. More generally, if x = b y, then y is the logarithm of x to base b, written log b x, so log 10 1000 = 3. As a single-variable function, the logarithm to base b is the inverse of exponentiation with base b.
The logarithm keys (log for base-10 and ln for base-e) on a typical scientific calculator. The advent of hand-held calculators largely eliminated the use of common logarithms as an aid to computation. The numerical value for logarithm to the base 10 can be calculated with the following identities: [5]
The logarithmic derivative is another way of stating the rule for differentiating the logarithm of a function (using the chain rule): () ′ = ′, wherever is positive. Logarithmic differentiation is a technique which uses logarithms and its differentiation rules to simplify certain expressions before actually applying the derivative.
Unlike a linear scale where each unit of distance corresponds to the same increment, on a logarithmic scale each unit of length is a multiple of some base value raised to a power, and corresponds to the multiplication of the previous value in the scale by the base value. In common use, logarithmic scales are in base 10 (unless otherwise specified).
The Chebyshev functions, especially the second one ψ (x), are often used in proofs related to prime numbers, because it is typically simpler to work with them than with the prime-counting function, π (x) (see the exact formula below.) Both Chebyshev functions are asymptotic to x, a statement equivalent to the prime number theorem.