When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Network behavior anomaly detection - Wikipedia

    en.wikipedia.org/wiki/Network_Behavior_Anomaly...

    Network behavior anomaly detection (NBAD) is a security technique that provides network security threat detection. It is a complementary technology to systems that detect security threats based on packet signatures. [1] NBAD is the continuous monitoring of a network for unusual events or trends.

  3. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Anomaly detection: 2016 (continually updated) [328] Numenta Skoltech Anomaly Benchmark (SKAB) Each file represents a single experiment and contains a single anomaly. The dataset represents a multivariate time series collected from the sensors installed on the testbed.

  4. Anomaly detection - Wikipedia

    en.wikipedia.org/wiki/Anomaly_detection

    Supervised anomaly detection techniques require a data set that has been labeled as "normal" and "abnormal" and involves training a classifier. However, this approach is rarely used in anomaly detection due to the general unavailability of labelled data and the inherent unbalanced nature of the classes.

  5. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  6. Anomaly-based intrusion detection system - Wikipedia

    en.wikipedia.org/wiki/Anomaly-based_intrusion...

    In order to positively identify attack traffic, the system must be taught to recognize normal system activity. The two phases of a majority of anomaly detection systems consist of the training phase (where a profile of normal behaviors is built) and testing phase (where current traffic is compared with the profile created in the training phase ...

  7. Local outlier factor - Wikipedia

    en.wikipedia.org/wiki/Local_outlier_factor

    In anomaly detection, the local outlier factor (LOF) is an algorithm proposed by Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng and Jörg Sander in 2000 for finding anomalous data points by measuring the local deviation of a given data point with respect to its neighbours.

  8. Data mining - Wikipedia

    en.wikipedia.org/wiki/Data_mining

    Anomaly detection (outlier/change/deviation detection) – The identification of unusual data records, that might be interesting or data errors that require further investigation due to being out of standard range. Association rule learning (dependency modeling) – Searches for relationships between variables. For example, a supermarket might ...

  9. DBSCAN - Wikipedia

    en.wikipedia.org/wiki/DBSCAN

    Density-based spatial clustering of applications with noise (DBSCAN) is a data clustering algorithm proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu in 1996. [1]