When.com Web Search

  1. Ad

    related to: o n algorithm c++ example exercises youtube free pdf tutorial

Search results

  1. Results From The WOW.Com Content Network
  2. Ukkonen's algorithm - Wikipedia

    en.wikipedia.org/wiki/Ukkonen's_algorithm

    The naive implementation for generating a suffix tree going forward requires O(n 2) or even O(n 3) time complexity in big O notation, where n is the length of the string. By exploiting a number of algorithmic techniques, Ukkonen reduced this to O ( n ) (linear) time, for constant-size alphabets, and O ( n log n ) in general, matching the ...

  3. Convex hull algorithms - Wikipedia

    en.wikipedia.org/wiki/Convex_hull_algorithms

    Monotone chain, a.k.a. Andrew's algorithmO(n log n) Published in 1979 by A. M. Andrew. The algorithm can be seen as a variant of Graham scan which sorts the points lexicographically by their coordinates. When the input is already sorted, the algorithm takes O(n) time. Incremental convex hull algorithmO(n log n) Published in 1984 by ...

  4. Selection sort - Wikipedia

    en.wikipedia.org/wiki/Selection_sort

    It has a O(n 2) time complexity, which makes it inefficient on large lists, and generally performs worse than the similar insertion sort. Selection sort is noted for its simplicity and has performance advantages over more complicated algorithms in certain situations, particularly where auxiliary memory is limited.

  5. Delaunay triangulation - Wikipedia

    en.wikipedia.org/wiki/Delaunay_triangulation

    In this algorithm, one recursively draws a line to split the vertices into two sets. The Delaunay triangulation is computed for each set, and then the two sets are merged along the splitting line. Using some clever tricks, the merge operation can be done in time O(n), so the total running time is O(n log n). [17]

  6. Quicksort - Wikipedia

    en.wikipedia.org/wiki/Quicksort

    More abstractly, given an O(n) selection algorithm, one can use it to find the ideal pivot (the median) at every step of quicksort and thus produce a sorting algorithm with O(n log n) running time. Practical implementations of this variant are considerably slower on average, but they are of theoretical interest because they show an optimal ...

  7. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    Karatsuba multiplication is an O(n log 2 3) ≈ O(n 1.585) divide and conquer algorithm, that uses recursion to merge together sub calculations. By rewriting the formula, one makes it possible to do sub calculations / recursion. By doing recursion, one can solve this in a fast manner.

  8. Boolean operations on polygons - Wikipedia

    en.wikipedia.org/wiki/Boolean_operations_on_polygons

    Matthias Kramm's gfxpoly, a free C library for 2D polygons (BSD license). Klaas Holwerda's Boolean, a C++ library for 2D polygons. David Kennison's Polypack, a FORTRAN library based on the Vatti algorithm. Klamer Schutte's Clippoly, a polygon clipper written in C++. Michael Leonov's poly_Boolean, a C++ library, which extends the Schutte algorithm.

  9. Heapsort - Wikipedia

    en.wikipedia.org/wiki/Heapsort

    The heapsort algorithm can be divided into two phases: heap construction, and heap extraction. The heap is an implicit data structure which takes no space beyond the array of objects to be sorted; the array is interpreted as a complete binary tree where each array element is a node and each node's parent and child links are defined by simple arithmetic on the array indexes.