When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Creep (deformation) - Wikipedia

    en.wikipedia.org/wiki/Creep_(deformation)

    [7] = where ε is the creep strain, C is a constant dependent on the material and the particular creep mechanism, m and b are exponents dependent on the creep mechanism, Q is the activation energy of the creep mechanism, σ is the applied stress, d is the grain size of the material, k is the Boltzmann constant, and T is the absolute temperature.

  3. Creep-testing machine - Wikipedia

    en.wikipedia.org/wiki/Creep-testing_machine

    Primary Creep: the initial creep stage where the slope is rising rapidly at first in a short amount of time. After a certain amount of time has elapsed, the slope will begin to slowly decrease from its initial rise. Steady State Creep: the creep rate is constant so the line on the curve shows a straight line that is a steady rate.

  4. Viscoelasticity - Wikipedia

    en.wikipedia.org/wiki/Viscoelasticity

    In the nineteenth century, physicists such as James Clerk Maxwell, Ludwig Boltzmann, and Lord Kelvin researched and experimented with creep and recovery of glasses, metals, and rubbers. Viscoelasticity was further examined in the late twentieth century when synthetic polymers were engineered and used in a variety of applications. [ 2 ]

  5. Larson–Miller relation - Wikipedia

    en.wikipedia.org/wiki/Larson–Miller_relation

    Source: [6] can be obtained by accelerated creep test in which strain is recirded, interpolating the data (,) ⁡ (˙) = ˙ + ⁡ (˙) When adopting the Omega Method for a remaining life assessment, it is sufficient to estimate the creep strain rate at the service stress and temperature by conducting creep tests on the material that has been exposed to service conditions.

  6. Deformation mechanism - Wikipedia

    en.wikipedia.org/wiki/Deformation_mechanism

    Nabarro-Herring creep has a weak stress dependence. Coble creep, or grain-boundary diffusion, is the diffusion of vacancies occurs along grain-boundaries to elongate the grains along the stress axis. Coble creep has a stronger grain-size dependence than Nabarro–Herring creep, and occurs at lower temperatures while remaining temperature dependent.

  7. Thermomechanical analysis - Wikipedia

    en.wikipedia.org/wiki/Thermomechanical_analysis

    Analysis of the data is performed using the four component viscoelastic model where the elements are represented by combinations of springs and dashpots. The experiment can be repeated using different creep forces. The results for varying forces after the same creep time can be used to construct isochronal stress–strain curves.

  8. Microrheology - Wikipedia

    en.wikipedia.org/wiki/Microrheology

    It is a new way of doing rheology, traditionally done using a rheometer. There are two types of microrheology: passive microrheology and active microrheology . Passive microrheology uses inherent thermal energy to move the tracers, whereas active microrheology uses externally applied forces, such as from a magnetic field or an optical tweezer ...

  9. Deborah number - Wikipedia

    en.wikipedia.org/wiki/Deborah_number

    The Deborah number (De) is a dimensionless number, often used in rheology to characterize the fluidity of materials under specific flow conditions. It quantifies the observation that given enough time even a solid-like material might flow, or a fluid-like material can act solid when it is deformed rapidly enough.