Search results
Results From The WOW.Com Content Network
Originally described in Xu's Ph.D. thesis [9] and later published in Bramble-Pasciak-Xu, [10] the BPX-preconditioner is one of the two major multigrid approaches (the other is the classic multigrid algorithm such as V-cycle) for solving large-scale algebraic systems that arise from the discretization of models in science and engineering ...
For example, if a system contains , a system over the rational numbers is obtained by adding the equation r 2 2 – 2 = 0 and replacing by r 2 in the other equations. In the case of a finite field, the same transformation allows always supposing that the field k has a prime order.
The concept can also be applied to more general systems of equations, such as systems of polynomial equations or partial differential equations. In the case of the systems of polynomial equations, it may happen that an overdetermined system has a solution, but that no one equation is a consequence of the others and that, when removing any ...
In mathematics, a set of simultaneous equations, also known as a system of equations or an equation system, is a finite set of equations for which common solutions are sought. An equation system is usually classified in the same manner as single equations, namely as a: System of linear equations, System of nonlinear equations,
The system + =, + = has exactly one solution: x = 1, y = 2 The nonlinear system + =, + = has the two solutions (x, y) = (1, 0) and (x, y) = (0, 1), while + + =, + + =, + + = has an infinite number of solutions because the third equation is the first equation plus twice the second one and hence contains no independent information; thus any value of z can be chosen and values of x and y can be ...
Two linear systems using the same set of variables are equivalent if each of the equations in the second system can be derived algebraically from the equations in the first system, and vice versa. Two systems are equivalent if either both are inconsistent or each equation of each of them is a linear combination of the equations of the other one.
In mathematics, two functions are said to be topologically conjugate if there exists a homeomorphism that will conjugate the one into the other. Topological conjugacy, and related-but-distinct § Topological equivalence of flows, are important in the study of iterated functions and more generally dynamical systems, since, if the dynamics of one iterative function can be determined, then that ...
In econometrics, the equations of a structural form model are estimated in their theoretically given form, while an alternative approach to estimation is to first solve the theoretical equations for the endogenous variables to obtain reduced form equations, and then to estimate the reduced form equations.