When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Tensor (intrinsic definition) - Wikipedia

    en.wikipedia.org/wiki/Tensor_(intrinsic_definition)

    The rank of a tensor of order 2 agrees with the rank when the tensor is regarded as a matrix, [3] and can be determined from Gaussian elimination for instance. The rank of an order 3 or higher tensor is however often very difficult to determine, and low rank decompositions of tensors are sometimes of great practical interest. [4]

  3. Tensor rank decomposition - Wikipedia

    en.wikipedia.org/wiki/Tensor_rank_decomposition

    On the other hand, a randomly sampled complex tensor of the same size will be a rank-1 tensor with probability zero, a rank-2 tensor with probability one, and a rank-3 tensor with probability zero. It is even known that the generic rank-3 real tensor in R 2 ⊗ R 2 ⊗ R 2 {\displaystyle \mathbb {R} ^{2}\otimes \mathbb {R} ^{2}\otimes \mathbb ...

  4. Tensor - Wikipedia

    en.wikipedia.org/wiki/Tensor

    The total number of indices is also called the order, degree or rank of a tensor, [2] [3] [4] although the term "rank" generally has another meaning in the context of matrices and tensors. Just as the components of a vector change when we change the basis of the vector space, the components of a tensor also change under such a transformation.

  5. Levi-Civita symbol - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_symbol

    A tensor whose components in an orthonormal basis are given by the Levi-Civita symbol (a tensor of covariant rank n) is sometimes called a permutation tensor. Under the ordinary transformation rules for tensors the Levi-Civita symbol is unchanged under pure rotations, consistent with that it is (by definition) the same in all coordinate systems ...

  6. Glossary of tensor theory - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_tensor_theory

    The rank of a tensor is the minimum number of rank-one tensor that must be summed to obtain the tensor. A rank-one tensor may be defined as expressible as the outer product of the number of nonzero vectors needed to obtain the correct order. Dyadic tensor A dyadic tensor is a tensor of order two, and may be represented as a square matrix. In ...

  7. Tensor product - Wikipedia

    en.wikipedia.org/wiki/Tensor_product

    The tensor product of two vector spaces is a vector space that is defined up to an isomorphism.There are several equivalent ways to define it. Most consist of defining explicitly a vector space that is called a tensor product, and, generally, the equivalence proof results almost immediately from the basic properties of the vector spaces that are so defined.

  8. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    More precisely, matrices are tensors of type (1,1), having one row index and one column index, also called covariant order 1 and contravariant order 1; see Tensor (intrinsic definition) for details. The tensor rank of a matrix can also mean the minimum number of simple tensors necessary to express the matrix as a linear combination, and that ...

  9. Voigt notation - Wikipedia

    en.wikipedia.org/wiki/Voigt_notation

    Hooke's law has a symmetric fourth-order stiffness tensor with 81 components (3×3×3×3), but because the application of such a rank-4 tensor to a symmetric rank-2 tensor must yield another symmetric rank-2 tensor, not all of the 81 elements are independent. Voigt notation enables such a rank-4 tensor to be represented by a 6×6 matrix ...