When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. BERT (language model) - Wikipedia

    en.wikipedia.org/wiki/BERT_(language_model)

    The high performance of the BERT model could also be attributed [citation needed] to the fact that it is bidirectionally trained. This means that BERT, based on the Transformer model architecture, applies its self-attention mechanism to learn information from a text from the left and right side during training, and consequently gains a deep ...

  3. Open Neural Network Exchange - Wikipedia

    en.wikipedia.org/wiki/Open_Neural_Network_Exchange

    The Open Neural Network Exchange (ONNX) [ˈɒnɪks] [2] is an open-source artificial intelligence ecosystem [3] of technology companies and research organizations that establish open standards for representing machine learning algorithms and software tools to promote innovation and collaboration in the AI sector.

  4. Activation function - Wikipedia

    en.wikipedia.org/wiki/Activation_function

    The binary step activation function is not differentiable at 0, and it differentiates to 0 for all other values, so gradient-based methods can make no progress with it. [ 7 ] These properties do not decisively influence performance, nor are they the only mathematical properties that may be useful.

  5. PyTorch - Wikipedia

    en.wikipedia.org/wiki/PyTorch

    In September 2022, Meta announced that PyTorch would be governed by the independent PyTorch Foundation, a newly created subsidiary of the Linux Foundation. [ 24 ] PyTorch 2.0 was released on 15 March 2023, introducing TorchDynamo , a Python-level compiler that makes code run up to 2x faster, along with significant improvements in training and ...

  6. llama.cpp - Wikipedia

    en.wikipedia.org/wiki/Llama.cpp

    The GGUF (GGML Universal File) [30] file format is a binary format that stores both tensors and metadata in a single file, and is designed for fast saving, and loading of model data. [31] It was introduced in August 2023 by the llama.cpp project to better maintain backwards compatibility as support was added for other model architectures.

  7. Multiclass classification - Wikipedia

    en.wikipedia.org/wiki/Multiclass_classification

    In pseudocode, the training algorithm for an OvR learner constructed from a binary classification learner L is as follows: Inputs: L, a learner (training algorithm for binary classifiers) samples X; labels y where y i ∈ {1, … K} is the label for the sample X i; Output: a list of classifiers f k for k ∈ {1, …, K} Procedure: For each k in ...

  8. bfloat16 floating-point format - Wikipedia

    en.wikipedia.org/wiki/Bfloat16_floating-point_format

    The bfloat16 binary floating-point exponent is encoded using an offset-binary representation, with the zero offset being 127; also known as exponent bias in the IEEE 754 standard. E min = 01 H −7F H = −126; E max = FE H −7F H = 127; Exponent bias = 7F H = 127

  9. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]