Search results
Results From The WOW.Com Content Network
Luminosity is an absolute measure of radiated electromagnetic energy per unit time, and is synonymous with the radiant power emitted by a light-emitting object. [1] [2] In astronomy, luminosity is the total amount of electromagnetic energy emitted per unit of time by a star, galaxy, or other astronomical objects. [3] [4]
Hertzsprung noted that stars described with narrow lines tended to have smaller proper motions than the others of the same spectral classification. He took this as an indication of greater luminosity for the narrow-line stars, and computed secular parallaxes for several groups of these, allowing him to estimate their absolute magnitude. [2]
By hypothetically placing all objects at a standard reference distance from the observer, their luminosities can be directly compared among each other on a magnitude scale. For Solar System bodies that shine in reflected light, a different definition of absolute magnitude (H) is used, based on a standard reference distance of one astronomical unit.
The absolute magnitude (M) describes the intrinsic luminosity emitted by an object and is defined to be equal to the apparent magnitude that the object would have if it were placed at a certain distance, 10 parsecs for stars. A more complex definition of absolute magnitude is used for planets and small Solar System bodies, based on its ...
Stellar structure models describe the internal structure of a star in detail and make predictions about the luminosity, the color and the future evolution of the star. Different classes and ages of stars have different internal structures, reflecting their elemental makeup and energy transport mechanisms.
The main sequence luminosity function maps the distribution of main sequence stars according to their luminosity. It is used to compare star formation and death rates, and evolutionary models, with observations. Main sequence luminosity functions vary depending on their host galaxy and on selection criteria for the stars, for example in the ...
The evolving star may eject some portion of its atmosphere to form a nebula, either steadily to form a planetary nebula or in a supernova explosion that leaves a remnant. Depending on the initial mass of the star and the presence or absence of a companion, a star may spend the last part of its life as a compact object ; either a white dwarf ...
The object's actual luminosity is determined using the inverse-square law and the proportions of the object's apparent distance and luminosity distance. Another way to express the luminosity distance is through the flux-luminosity relationship, = where F is flux (W·m −2), and L is luminosity (W). From this the luminosity distance (in meters ...