When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Conic section - Wikipedia

    en.wikipedia.org/wiki/Conic_section

    Define b by the equations c 2 = a 2 − b 2 for an ellipse and c 2 = a 2 + b 2 for a hyperbola. For a circle, c = 0 so a 2 = b 2, with radius r = a = b. For the parabola, the standard form has the focus on the x-axis at the point (a, 0) and the directrix the line with equation x = −a. In standard form the parabola will always pass through the ...

  3. Generatrix - Wikipedia

    en.wikipedia.org/wiki/Generatrix

    A cone can be generated by moving a line (the generatrix) fixed at the future apex of the cone along a closed curve (the directrix); if that directrix is a circle perpendicular to the line connecting its center to the apex, the motion is rotation around a fixed axis and the resulting shape is a circular cone.

  4. Dupin's theorem - Wikipedia

    en.wikipedia.org/wiki/Dupin's_theorem

    2. pencil: Cones with apexes on the axis of the given cone such that the lines are orthogonal to the lines of the given cone (blue). 3. pencil: Planes through the cone's axis (purple). These three pencils of surfaces are an orthogonal system of surfaces. The blue cones intersect the given cone C at a circle (red).

  5. Conical surface - Wikipedia

    en.wikipedia.org/wiki/Conical_surface

    If the directrix is a circle , and the apex is located on the circle's axis (the line that contains the center of and is perpendicular to its plane), one obtains the right circular conical surface or double cone. [2] More generally, when the directrix is an ellipse, or any conic section, and the apex is an arbitrary point not on the plane of ...

  6. Eccentricity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Eccentricity_(mathematics)

    A family of conic sections of varying eccentricity share a focus point and directrix line, including an ellipse (red, e = 1/2), a parabola (green, e = 1), and a hyperbola (blue, e = 2). The conic of eccentricity 0 in this figure is an infinitesimal circle centered at the focus, and the conic of eccentricity ∞ is an infinitesimally separated ...

  7. Focus (geometry) - Wikipedia

    en.wikipedia.org/wiki/Focus_(geometry)

    The ellipse thus generated has its second focus at the center of the directrix circle, and the ellipse lies entirely within the circle. For the parabola, the center of the directrix moves to the point at infinity (see Projective geometry). The directrix "circle" becomes a curve with zero curvature, indistinguishable from a straight line.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Parabola - Wikipedia

    en.wikipedia.org/wiki/Parabola

    The vertex A is equidistant from the focus F and from the directrix. Since C is on the directrix, the y coordinates of F and C are equal in absolute value and opposite in sign. B is the midpoint of FC. Its x coordinate is half that of D, that is, x/2. The slope of the line BE is the quotient of the lengths of ED and BD, which is ⁠ x 2 / x/2 ...