Search results
Results From The WOW.Com Content Network
Stem Candidate Aligner for RNA (Scarna) is a fast, convenient tool for structural alignment of a pair of RNA sequences. It aligns two RNA sequences and calculates the similarities of them, based on the estimated common secondary structures. It works even for pseudoknotted secondary structures. 2: Yes: Yes: No: webserver [91] SimulFold
Nucleic acids strands may also form hybrids in which single stranded DNA may readily anneal with complementary DNA or RNA. This principle is the basis of commonly performed laboratory techniques such as the polymerase chain reaction, PCR. [1] Two strands of complementary sequence are referred to as sense and anti-sense. The sense strand is ...
The Nussinov algorithm does not account for the three-dimensional shape of RNA, nor predict RNA pseudoknots. [2] Furthermore, in its basic form, it does not account for a minimum stem loop size. However, it is still useful as a fast algorithm for basic prediction of secondary structure.
Both DNA and RNA are nucleic acids, which use base pairs of nucleotides as a complementary language. During transcription, a DNA sequence is read by an RNA polymerase, which produces a complementary, antiparallel RNA strand called a primary transcript. In virology, the term transcription is used when referring to mRNA synthesis from a viral RNA ...
An RNA sequence that is complementary to an endogenous mRNA transcript is sometimes called "antisense RNA". In other words, it is a non-coding strand complementary to the coding sequence of RNA; this is similar to negative-sense viral RNA. When mRNA forms a duplex with a complementary antisense RNA sequence, translation is blocked.
Silencing of RNA occurs when double stranded RNA molecules are processed by a series of enzymatic reactions, resulting in RNA fragments that degrade complementary RNA sequences. [13] [14] By degrading transcripts, a lower amount of protein products are translated and the phenotype is altered by yet another RNA processing event.
Fluorescence in situ hybridization (FISH) is a laboratory method used to detect and locate a DNA sequence, often on a particular chromosome. [4]In the 1960s, researchers Joseph Gall and Mary Lou Pardue found that molecular hybridization could be used to identify the position of DNA sequences in situ (i.e., in their natural positions within a chromosome).
In situ hybridization (ISH) is a type of hybridization that uses a labeled complementary DNA, RNA or modified nucleic acid strand (i.e., a probe) to localize a specific DNA or RNA sequence in a portion or section of tissue or if the tissue is small enough (e.g., plant seeds, Drosophila embryos), in the entire tissue (whole mount ISH), in cells ...