When.com Web Search

  1. Ads

    related to: calculating velocity worksheet with formula triangle

Search results

  1. Results From The WOW.Com Content Network
  2. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  3. Velocity triangle - Wikipedia

    en.wikipedia.org/wiki/Velocity_triangle

    Velocity triangles may be drawn for both the inlet and outlet sections of any turbomachine. The vector nature of velocity is utilized in the triangles, and the most basic form of a velocity triangle consists of the tangential velocity, the absolute velocity and the relative velocity of the fluid making up three sides of the triangle.

  4. Euler's pump and turbine equation - Wikipedia

    en.wikipedia.org/wiki/Euler's_pump_and_turbine...

    The color triangles formed by velocity vectors u,c and w are called velocity triangles and are helpful in explaining how pumps work. c 1 {\displaystyle c_{1}\,} and c 2 {\displaystyle c_{2}\,} are the absolute velocities of the fluid at the inlet and outlet respectively.

  5. Piston motion equations - Wikipedia

    en.wikipedia.org/wiki/Piston_motion_equations

    For rod length 6" and crank radius 2" (as shown in the example graph below), numerically solving the acceleration zero-crossings finds the velocity maxima/minima to be at crank angles of ±73.17615°. Then, using the triangle law of sines, it is found that the rod-vertical angle is 18.60647° and the crank-rod angle is 88.21738°. Clearly, in ...

  6. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  7. Maxwell–Boltzmann distribution - Wikipedia

    en.wikipedia.org/wiki/Maxwell–Boltzmann...

    For a system containing a large number of identical non-interacting, non-relativistic classical particles in thermodynamic equilibrium, the fraction of the particles within an infinitesimal element of the three-dimensional velocity space d 3 v, centered on a velocity vector of magnitude , is given by = [] / ⁡ , where:

  8. Angular velocity - Wikipedia

    en.wikipedia.org/wiki/Angular_velocity

    In physics, angular velocity (symbol ω or , the lowercase Greek letter omega), also known as the angular frequency vector, [1] is a pseudovector representation of how the angular position or orientation of an object changes with time, i.e. how quickly an object rotates (spins or revolves) around an axis of rotation and how fast the axis itself changes direction.

  9. List of relativistic equations - Wikipedia

    en.wikipedia.org/wiki/List_of_relativistic_equations

    This is the formula for the relativistic doppler shift where the difference in velocity between the emitter and observer is not on the x-axis. There are two special cases of this equation. The first is the case where the velocity between the emitter and observer is along the x-axis. In that case θ = 0, and cos θ = 1, which gives: