Search results
Results From The WOW.Com Content Network
A bromide ion is the negatively charged form (Br −) of the element bromine, a member of the halogens group on the periodic table. Most bromides are colorless. Most bromides are colorless. Bromides have many practical roles, being found in anticonvulsants, flame-retardant materials, and cell stains. [ 3 ]
The bromide ion acquires a positive formal charge. At this moment the halogen ion is called a "bromonium ion" or "chloronium ion", respectively. When the first bromine atom attacks the carbon–carbon π-bond, it leaves behind one of its electrons with the other bromine that it was bonded to in Br 2.
A bromate is a chemical compound that contains this ion. Examples of bromates include sodium bromate (NaBrO 3) and potassium bromate (KBrO 3). Bromates are formed many different ways in municipal drinking water. The most common is the reaction of ozone and bromide: Br − + O 3 → BrO − 3
Large amounts of bromide salts are toxic from the action of soluble bromide ions, causing bromism. However, bromine is beneficial for human eosinophils, [10] and is an essential trace element for collagen development in all animals. [11]
Sodium bromide is an inorganic compound with the formula Na Br. It is a high-melting white, crystalline solid that resembles sodium chloride . It is a widely used source of the bromide ion and has many applications.
The anion reacts with bromine in an α-substitution reaction to give an N-bromoamide. Base abstraction of the remaining amide proton gives a bromoamide anion. The bromoamide anion rearranges as the R group attached to the carbonyl carbon migrates to nitrogen at the same time the bromide ion leaves, giving an isocyanate.
Silver bromide (AgBr). Nearly all elements in the periodic table form binary bromides. The exceptions are decidedly in the minority and stem in each case from one of three causes: extreme inertness and reluctance to participate in chemical reactions (the noble gases, with the exception of xenon in the very unstable XeBr 2; extreme nuclear instability hampering chemical investigation before ...
Thus, S N 1 reactions are often observed to slow down when an exogenous source of the leaving group (in this case, bromide) is added to the reaction mixture. This is known as the common ion effect and the observation of this effect is evidence for an S N 1 mechanism (although the absence of a common ion effect does not rule it out).