Search results
Results From The WOW.Com Content Network
List comprehension is a syntactic construct available in some programming languages for creating a list based on existing lists. It follows the form of the mathematical set-builder notation (set comprehension) as distinct from the use of map and filter functions.
Here, the list [0..] represents , x^2>3 represents the predicate, and 2*x represents the output expression.. List comprehensions give results in a defined order (unlike the members of sets); and list comprehensions may generate the members of a list in order, rather than produce the entirety of the list thus allowing, for example, the previous Haskell definition of the members of an infinite list.
When eager evaluation is desirable (primarily when the sequence is finite, as otherwise evaluation will never terminate), one can either convert to a list, or use a parallel construction that creates a list instead of a generator. For example, in Python a generator g can be evaluated to a list l via l = list(g), while in F# the sequence ...
Python's name is derived from the British comedy group Monty Python, whom Python creator Guido van Rossum enjoyed while developing the language. Monty Python references appear frequently in Python code and culture; [190] for example, the metasyntactic variables often used in Python literature are spam and eggs instead of the traditional foo and ...
Introduced in Python 2.2 as an optional feature and finalized in version 2.3, generators are Python's mechanism for lazy evaluation of a function that would otherwise return a space-prohibitive or computationally intensive list. This is an example to lazily generate the prime numbers:
Jinja is a web template engine for the Python programming language.It was created by Armin Ronacher and is licensed under a BSD License.Jinja is similar to the Django template engine, but provides Python-like expressions while ensuring that the templates are evaluated in a sandbox.
In Python, if a name is intended to be "private", it is prefixed by one or two underscores. Private variables are enforced in Python only by convention. Names can also be suffixed with an underscore to prevent conflict with Python keywords. Prefixing with double underscores changes behaviour in classes with regard to name mangling.
The phrase grammar of most programming languages can be specified using a Type-2 grammar, i.e., they are context-free grammars, [8] though the overall syntax is context-sensitive (due to variable declarations and nested scopes), hence Type-1. However, there are exceptions, and for some languages the phrase grammar is Type-0 (Turing-complete).