Search results
Results From The WOW.Com Content Network
Optical rotation, also known as polarization rotation or circular birefringence, is the rotation of the orientation of the plane of polarization about the optical axis of linearly polarized light as it travels through certain materials. Circular birefringence and circular dichroism are the manifestations of optical activity.
An object that cannot be superimposed on its mirror image is said to be chiral, and optical rotatory dispersion and circular dichroism are known as chiroptical properties. Most biological molecules have one or more chiral centers and undergo enzyme-catalyzed transformations that either maintain or invert the chirality at one or more of these ...
To find the angle of a rotation, once the axis of the rotation is known, select a vector v perpendicular to the axis. Then the angle of the rotation is the angle between v and R v . A more direct method, however, is to simply calculate the trace : the sum of the diagonal elements of the rotation matrix.
Specific rotation is an intensive property, distinguishing it from the more general phenomenon of optical rotation. As such, the observed rotation ( α ) of a sample of a compound can be used to quantify the enantiomeric excess of that compound, provided that the specific rotation ( [α] ) for the enantiopure compound is known.
A broadband prismatic rotator rotates the linear polarization by 90° using seven internal reflections to induce collinear rotation, as shown in the diagram. [2] The polarization is rotated in the second reflection, but that leaves the beam in a different plane and at a right angle relative to the incident beam.
In geometrical optics, for each object ray entering an optical system, a single and unique image ray exits from the system. In mathematical terms, the optical system performs a transformation that maps every object ray to an image ray. [1] The object ray and its associated image ray are said to be conjugate to each other. This term also applies ...
Light, or more generally an electromagnetic wave, carries not only energy but also momentum, which is a characteristic property of all objects in translational motion. The existence of this momentum becomes apparent in the "radiation pressure " phenomenon, in which a light beam transfers its momentum to an absorbing or scattering object, generating a mechanical pressure on it in the process.
The Faraday effect or Faraday rotation, sometimes referred to as the magneto-optic Faraday effect (MOFE), [1] is a physical magneto-optical phenomenon. The Faraday effect causes a polarization rotation which is proportional to the projection of the magnetic field along the direction of the light propagation.