Search results
Results From The WOW.Com Content Network
Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.
In the Java virtual machine, internal type signatures are used to identify methods and classes at the level of the virtual machine code. Example: The method String String. substring (int, int) is represented in bytecode as Ljava / lang / String. substring (II) Ljava / lang / String;. The signature of the main method looks like this: [2]
modified_identifier_list «As «non_array_type««array_rank_specifier»» (multiple declarator); valid declaration statements are of the form Dim declarator_list , where, for the purpose of semantic analysis, to convert the declarator_list to a list of only single declarators:
In Lua, "table" is a fundamental type that can be used either as an array (numerical index, fast) or as an associative array. The keys and values can be of any type, except nil. The following focuses on non-numerical indexes. A table literal is written as { value, key = value, [index] = value, ["non id string"] = value }. For example:
Single precision is termed REAL in Fortran; [1] SINGLE-FLOAT in Common Lisp; [2] float in C, C++, C# and Java; [3] Float in Haskell [4] and Swift; [5] and Single in Object Pascal , Visual Basic, and MATLAB. However, float in Python, Ruby, PHP, and OCaml and single in versions of Octave before 3.2 refer to double-precision numbers.
In computer science, an associative array, map, symbol table, or dictionary is an abstract data type that stores a collection of (key, value) pairs, such that each possible key appears at most once in the collection. In mathematical terms, an associative array is a function with finite domain. [1] It supports 'lookup', 'remove', and 'insert ...
Matrix multiplication is an example of a 2-rank function, because it operates on 2-dimensional objects (matrices). Collapse operators reduce the dimensionality of an input data array by one or more dimensions. For example, summing over elements collapses the input array by 1 dimension.
It is intended for storage of floating-point values in applications where higher precision is not essential, in particular image processing and neural networks. Almost all modern uses follow the IEEE 754-2008 standard, where the 16-bit base-2 format is referred to as binary16 , and the exponent uses 5 bits.