When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of integrals of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    The following is a list of integrals (antiderivative functions) of trigonometric functions.For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions.

  3. Trigonometric integral - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_integral

    Plot of Si(x) for 0x ≤ 8π. Plot of the cosine integral function Ci(z) in the complex plane from −2 − 2i to 2 + 2i. The different sine integral definitions are ⁡ = ⁡ ⁡ = ⁡ .

  4. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    Ptolemy's theorem states that the sum of the products of the lengths of opposite sides is equal to the product of the lengths of the diagonals. When those side-lengths are expressed in terms of the sin and cos values shown in the figure above, this yields the angle sum trigonometric identity for sine: sin(α + β) = sin α cos β + cos α sin β.

  5. List of definite integrals - Wikipedia

    en.wikipedia.org/wiki/List_of_definite_integrals

    Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.). Washington D.C.; New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. ISBN 978-0-486-61272-0. LCCN 64-60036. MR 0167642. LCCN 65-12253

  6. Borwein integral - Wikipedia

    en.wikipedia.org/wiki/Borwein_integral

    In mathematics, a Borwein integral is an integral whose unusual properties were first presented by mathematicians David Borwein and Jonathan Borwein in 2001. [1] Borwein integrals involve products of ⁡ (), where the sinc function is given by ⁡ = ⁡ / for not equal to 0, and ⁡ =.

  7. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    ⁡ = (where I 0 (x) is the modified Bessel function of the first kind) ∫ 0 2 π e x cos ⁡ θ + y sin ⁡ θ d θ = 2 π I 0 ( x 2 + y 2 ) {\displaystyle \int _{0}^{2\pi }e^{x\cos \theta +y\sin \theta }d\theta =2\pi I_{0}\left({\sqrt {x^{2}+y^{2}}}\right)}

  8. Integration using Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Integration_using_Euler's...

    At this point we can either integrate directly, or we can first change the integrand to 2 cos 6x − 4 cos 4x + 2 cos 2x and continue from there. Either method gives Either method gives ∫ sin 2 ⁡ x cos ⁡ 4 x d x = − 1 24 sin ⁡ 6 x + 1 8 sin ⁡ 4 x − 1 8 sin ⁡ 2 x + C . {\displaystyle \int \sin ^{2}x\cos 4x\,dx=-{\frac {1}{24 ...

  9. Dirichlet integral - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_integral

    In mathematics, there are several integrals known as the Dirichlet integral, after the German mathematician Peter Gustav Lejeune Dirichlet, one of which is the improper integral of the sinc function over the positive real number line.