Search results
Results From The WOW.Com Content Network
In computational complexity theory, the polynomial hierarchy (sometimes called the polynomial-time hierarchy) is a hierarchy of complexity classes that generalize the classes NP and co-NP. [1] Each class in the hierarchy is contained within PSPACE. The hierarchy can be defined using oracle machines or alternating Turing machines.
It runs in polynomial time on inputs that are in SUBSET-SUM if and only if P = NP: // Algorithm that accepts the NP-complete language SUBSET-SUM. // // this is a polynomial-time algorithm if and only if P = NP. // // "Polynomial-time" means it returns "yes" in polynomial time when // the answer should be "yes", and runs forever when it is "no".
The class P #P consists of all the problems that can be solved in polynomial time if you have access to instantaneous answers to any counting problem in #P (polynomial time relative to a #P oracle). Thus Toda's theorem implies that for any problem in the polynomial hierarchy there is a deterministic polynomial-time Turing reduction to a ...
The union of the classes in the polynomial hierarchy: P NP: Solvable in polynomial time with an oracle for a problem in NP; also known as Δ 2 P PP: Probabilistically Polynomial (answer is right with probability slightly more than 1/2) PPAD: Polynomial Parity Arguments on Directed graphs PR: Solvable by recursively building up arithmetic ...
In computational complexity theory, the complexity class PH is the union of all complexity classes in the polynomial hierarchy: = PH was first defined by Larry Stockmeyer. [1] It is a special case of hierarchy of bounded alternating Turing machine.
The theory has emerged as a result of (still failing) attempts to resolve the first and still the most important question of this kind, the P = NP problem.Most of the research is done basing on the assumption of P not being equal to NP and on a more far-reaching conjecture that the polynomial time hierarchy of complexity classes is infinite.
SO, unrestricted second-order logic, is equal to the Polynomial hierarchy PH. More precisely, we have the following generalisation of Fagin's theorem: The set of formulae in prenex normal form where existential and universal quantifiers of second order alternate k times characterise the kth level of the polynomial hierarchy. [17]
In computational complexity theory, a computational problem H is called NP-hard if, for every problem L which can be solved in non-deterministic polynomial-time, there is a polynomial-time reduction from L to H. That is, assuming a solution for H takes 1 unit time, H ' s solution can be used to solve L in polynomial time.