Search results
Results From The WOW.Com Content Network
The sample size is an important feature of any empirical study in which the goal is to make inferences about a population from a sample. In practice, the sample size used in a study is usually determined based on the cost, time, or convenience of collecting the data, and the need for it to offer sufficient statistical power .
where n is the sample size and N is the population size. A sampling fraction value close to 1 will occur if the sample size is relatively close to the population size. When sampling from a finite population without replacement, this may cause dependence between individual samples. To correct for this dependence when calculating the sample ...
Where is the sample size, = / is the fraction of the sample from the population, () is the (squared) finite population correction (FPC), is the unbiassed sample variance, and (¯) is some estimator of the variance of the mean under the sampling design. The issue with the above formula is that it is extremely rare to be able to directly estimate ...
Using these techniques, Malthus' population principle of growth was later transformed into a mathematical model known as the logistic equation: = (), where N is the population size, r is the intrinsic rate of natural increase, and K is the carrying capacity of the population. The formula can be read as follows: the rate of change in the ...
In statistics, quality assurance, and survey methodology, sampling is the selection of a subset or a statistical sample (termed sample for short) of individuals from within a statistical population to estimate characteristics of the whole population. The subset is meant to reflect the whole population, and statisticians attempt to collect ...
The rate of convergence must be chosen carefully, though, usually h ∝ n −1/5. In many cases, highly accurate results for finite samples can be obtained via numerical methods (i.e. computers); even in such cases, though, asymptotic analysis can be useful. This point was made by Small (2010, §1.4), as follows.
In statistics, a sampling distribution or finite-sample distribution is the probability distribution of a given random-sample-based statistic.For an arbitrarily large number of samples where each sample, involving multiple observations (data points), is separately used to compute one value of a statistic (for example, the sample mean or sample variance) per sample, the sampling distribution is ...
Suppose our sample is obtained from a finite population Z 1, ..., Z m. We can represent our sample of size n in terms of the proportion of the sample n i / n taking on each value in the population. Writing our estimator of θ as T(n 1 / n, ..., n m / n), the population analogue of the estimator is T(p 1, ..., p m), where p i = P(X = Z i).