Ads
related to: holes of a function calculator with points
Search results
Results From The WOW.Com Content Network
These four points form a convex quadrilateral, and all points that lie in this quadrilateral (except for the four initially chosen vertices) are not part of the convex hull. Finding all of these points that lie in this quadrilateral is also O(n), and thus, the entire operation is O(n). Optionally, the points with smallest and largest sums of x ...
The point set itself forms one endpoint of this family of shapes, and its convex hull forms the other endpoint. [41] The convex layers of a point set are a nested family of convex polygons, the outermost of which is the convex hull, with the inner layers constructed recursively from the points that are not vertices of the convex hull. [47]
Technically, a point z 0 is a pole of a function f if it is a zero of the function 1/f and 1/f is holomorphic (i.e. complex differentiable) in some neighbourhood of z 0. A function f is meromorphic in an open set U if for every point z of U there is a neighborhood of z in which at least one of f and 1/f is holomorphic.
In layman's terms, the genus is the number of "holes" an object has ("holes" interpreted in the sense of doughnut holes; a hollow sphere would be considered as having zero holes in this sense). [3] A torus has 1 such hole, while a sphere has 0. The green surface pictured above has 2 holes of the relevant sort. For instance:
The value of the function at a critical point is a critical value. [1] More specifically, when dealing with functions of a real variable, a critical point, also known as a stationary point, is a point in the domain of the function where the function derivative is equal to zero (or where the function is not differentiable). [2]
The unit circle is closed and bounded, but it has a hole (and so it is not convex) . The function f does have a fixed point for the unit disc, since it takes the origin to itself. A formal generalization of Brouwer's fixed-point theorem for "hole-free" domains can be derived from the Lefschetz fixed-point theorem. [11]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The limit is thus a fixed point of the auxiliary function, which is chosen for having the roots of the original equation as fixed points and for converging rapidly to these fixed points. The behavior of general root-finding algorithms is studied in numerical analysis .