Search results
Results From The WOW.Com Content Network
The altitude from A (dashed line segment) intersects the extended base at D (a point outside the triangle). In geometry, an altitude of a triangle is a line segment through a given vertex (called apex) and perpendicular to a line containing the side or edge opposite the apex.
An altitude of a triangle is a straight line through a vertex and perpendicular to the opposite side. This opposite side is called the base of the altitude, ...
The best known and simplest formula is = /, where b is the length of the base of the triangle, and h is the height or altitude of the triangle. The term "base" denotes any side, and "height" denotes the length of a perpendicular from the vertex opposite the base onto the line containing the base.
The altitude from A intersects the extended base at D (a point outside the triangle). In a triangle, any arbitrary side can be considered the base. The two endpoints of the base are called base vertices and the corresponding angles are called base angles. The third vertex opposite the base is called the apex.
If the triangle ABC is oblique (does not contain a right-angle), the pedal triangle of the orthocenter of the original triangle is called the orthic triangle or altitude triangle. That is, the feet of the altitudes of an oblique triangle form the orthic triangle, DEF .
Altitude f of a right triangle. If an altitude is drawn from the vertex, with the right angle to the hypotenuse, then the triangle is divided into two smaller triangles; these are both similar to the original, and therefore similar to each other. From this: The altitude to the hypotenuse is the geometric mean (mean proportional) of the two ...
The Simson line of a vertex of the triangle is the altitude of the triangle dropped from that vertex, and the Simson line of the point diametrically opposite to the vertex is the side of the triangle opposite to that vertex. If P and Q are points on the circumcircle, then the angle between the Simson lines of P and Q is half the angle of the ...
The area of an equilateral triangle with edge length is =. The formula may be derived from the formula of an isosceles triangle by Pythagoras theorem: the altitude of a triangle is the square root of the difference of squares of a side and half of a base. [3]