Search results
Results From The WOW.Com Content Network
Since O 2 has a triplet ground state and Vaska's complex is a singlet, the reaction is slower than when singlet oxygen is used. [7] The magnetic properties of some η 2-O 2 complexes show that the ligand, in fact, is superoxide, not peroxide. [8] Most complexes of η 2-O 2 are generated using hydrogen peroxide, not from O 2.
The first class mostly contains the peroxides of the alkali and alkaline earth metals whereas the covalent peroxides are represented by such compounds as hydrogen peroxide and peroxymonosulfuric acid (H 2 SO 5). In contrast to the purely ionic character of alkali metal peroxides, peroxides of transition metals have a more covalent character. [1]
Bent's rule can be extended to rationalize the hybridization of nonbonding orbitals as well. On the one hand, a lone pair (an occupied nonbonding orbital) can be thought of as the limiting case of an electropositive substituent, with electron density completely polarized towards the central atom.
In chemistry, isovalent or second order hybridization is an extension of orbital hybridization, the mixing of atomic orbitals into hybrid orbitals which can form chemical bonds, to include fractional numbers of atomic orbitals of each type (s, p, d). It allows for a quantitative depiction of bond formation when the molecular geometry deviates ...
In chemistry, a superoxide is a compound that contains the superoxide ion, which has the chemical formula O − 2. [1] The systematic name of the anion is dioxide(1−).The reactive oxygen ion superoxide is particularly important as the product of the one-electron reduction of dioxygen O 2, which occurs widely in nature. [2]
This trend reflects the stabilizing influence of the tetrahedral oxyanion that "glues" together the transition metal oxo framework. One reflection of their ruggedness, heteropolymetalates can be isolated in their acid form, whereas homopolymetalates typically cannot. Examples include: [4] [5] Silicotungstic acid, H 4 SiW 12 O 40 ·nH 2 O
Computational studies suggest that metal-metal bonding is absent in many compounds where the metals are separated by bridging ligands. For example, calculations suggest that Fe 2 (CO) 9 lacks an iron–iron bond by virtue of a 3-center 2-electron bond involving one of three bridging CO ligands.
A transition metal oxo complex is a coordination complex containing an oxo ligand. Formally O 2–, an oxo ligand can be bound to one or more metal centers, i.e. it can exist as a terminal or (most commonly) as bridging ligands. Oxo ligands stabilize high oxidation states of a metal. [1]