Search results
Results From The WOW.Com Content Network
Metamorphic rocks arise from the transformation of existing rock to new types of rock in a process called metamorphism. The original rock ( protolith ) is subjected to temperatures greater than 150 to 200 °C (300 to 400 °F) and, often, elevated pressure of 100 megapascals (1,000 bar ) or more, causing profound physical or chemical changes.
[33] [34] Subsequent erosion of the mountains exposes the roots of the orogenic belt as extensive outcrops of metamorphic rock, [35] characteristic of mountain chains. [33] Metamorphic rock formed in these settings tends to shown well-developed foliation. [33] Foliation develops when a rock is being shortened along one axis during metamorphism.
In the igneous environment, metasomatism produces skarns, greisen, and may affect hornfels in the contact metamorphic aureole adjacent to an intrusive rock mass. In the metamorphic environment, metasomatism is driven by mass transfer from a volume of metamorphic rock at higher stress and temperature into a zone with lower stress and temperature ...
These rocks are fine-grained and sometimes cool so rapidly that no crystals can form and result in a natural glass, such as obsidian, however the most common fine-grained rock would be known as basalt. Any of the three main types of rocks (igneous, sedimentary, and metamorphic rocks) can melt into magma and cool into igneous rocks. [2]
Metamorphic rocks with clockwise P-T-t paths are commonly associated with a near-isothermal decompressional P-T trajectory. [5] [6] Clockwise P-T-t path normally consists of three parts: [2] Initial heating and compression until arriving a peak, a high pressure-low temperature peak is often observed. (Prograde metamorphism until peak) [2]
Metamorphic rocks once existed as igneous or sedimentary rocks, but have been subjected to varying degrees of pressure and heat within the Earth's crust. The processes involved will change the composition and fabric of the rock and their original nature is often hard to distinguish. Metamorphic rocks are typically found in areas of mountain ...
Metamorphic banded gneiss. Metamorphic rocks are formed by subjecting any rock type—sedimentary rock, igneous rock or another older metamorphic rock—to different temperature and pressure conditions than those in which the original rock was formed.
Gneiss, a foliated metamorphic rock. Quartzite, a non-foliated metamorphic rock. Foliation in geology refers to repetitive layering in metamorphic rocks. [1] Each layer can be as thin as a sheet of paper, or over a meter in thickness. [1] The word comes from the Latin folium, meaning "leaf", and refers to the sheet-like planar structure. [1]