When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    The strong duality theorem states that if the primal has an optimal solution, x *, then the dual also has an optimal solution, y *, and c T x * =b T y *. A linear program can also be unbounded or infeasible. Duality theory tells us that if the primal is unbounded then the dual is infeasible by the weak duality theorem.

  3. Basic solution (linear programming) - Wikipedia

    en.wikipedia.org/wiki/Basic_solution_(Linear...

    In linear programming, a discipline within applied mathematics, a basic solution is any solution of a linear programming problem satisfying certain specified technical conditions. For a polyhedron P {\displaystyle P} and a vector x ∗ ∈ R n {\displaystyle \mathbf {x} ^{*}\in \mathbb {R} ^{n}} , x ∗ {\displaystyle \mathbf {x} ^{*}} is a ...

  4. Basic feasible solution - Wikipedia

    en.wikipedia.org/wiki/Basic_feasible_solution

    A basis B of the LP is called dual-optimal if the solution = is an optimal solution to the dual linear program, that is, it minimizes . In general, a primal-optimal basis is not necessarily dual-optimal, and a dual-optimal basis is not necessarily primal-optimal (in fact, the solution of a primal-optimal basis may even be unfeasible for the ...

  5. Dual linear program - Wikipedia

    en.wikipedia.org/wiki/Dual_linear_program

    The weak duality theorem says that, for each feasible solution x of the primal and each feasible solution y of the dual: c T x ≤ b T y. In other words, the objective value in each feasible solution of the dual is an upper-bound on the objective value of the primal, and objective value in each feasible solution of the primal is a lower-bound ...

  6. Feasible region - Wikipedia

    en.wikipedia.org/wiki/Feasible_region

    In mathematical optimization and computer science, a feasible region, feasible set, or solution space is the set of all possible points (sets of values of the choice variables) of an optimization problem that satisfy the problem's constraints, potentially including inequalities, equalities, and integer constraints. [1]

  7. Big M method - Wikipedia

    en.wikipedia.org/wiki/Big_M_method

    Then row reductions are applied to gain a final solution. The value of M must be chosen sufficiently large so that the artificial variable would not be part of any feasible solution. For a sufficiently large M, the optimal solution contains any artificial variables in the basis (i.e. positive values) if and only if the problem is not feasible.

  8. Karmarkar's algorithm - Wikipedia

    en.wikipedia.org/wiki/Karmarkar's_algorithm

    Karmarkar's algorithm falls within the class of interior-point methods: the current guess for the solution does not follow the boundary of the feasible set as in the simplex method, but moves through the interior of the feasible region, improving the approximation of the optimal solution by a definite fraction with every iteration and ...

  9. Duality (optimization) - Wikipedia

    en.wikipedia.org/wiki/Duality_(optimization)

    Any feasible solution to the primal (minimization) problem is at least as large as any feasible solution to the dual (maximization) problem. Therefore, the solution to the primal is an upper bound to the solution of the dual, and the solution of the dual is a lower bound to the solution of the primal. [1] This fact is called weak duality.