Search results
Results From The WOW.Com Content Network
By mental calculation, it is easier to multiply 16 by 3 ⁄ 16 than to do the same calculation using the fraction's decimal equivalent (0.1875). And it is more precise (exact, in fact) to multiply 15 by 1 ⁄ 3 , for example, than it is to multiply 15 by any decimal approximation of one third.
3 12: Hexadecimal: 3 16: Arabic, ... It is the first unique prime, such that the period length value of 1 of the decimal expansion of its reciprocal, 0.333 ...
Several earlier 16-bit floating point formats have existed including that of Hitachi's HD61810 DSP of 1982 (a 4-bit exponent and a 12-bit mantissa), [2] Thomas J. Scott's WIF of 1991 (5 exponent bits, 10 mantissa bits) [3] and the 3dfx Voodoo Graphics processor of 1995 (same as Hitachi).
binary, ternary, octal, decimal, hexadecimal (numbers expressed in base 2, base 3, base 8, base 10, base 16) septuagenarian, octogenarian (a person 70–79 years old, 80–89 years old) centipede , millipede (subgroups of arthropods with around 100 feet, or around 1 000 feet)
Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating. Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 36 ⁄ 25 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".
or "," as in 25.9703 or 3,1415). [3] Decimal may also refer specifically to the digits after the decimal separator, such as in "3.14 is the approximation of π to two decimals". Zero-digits after a decimal separator serve the purpose of signifying the precision of a value.
The otherwise binary Wang VS machine supported a 64-bit decimal floating-point format in 1977. [2] The Motorola 68881 supported a format with 17 digits of mantissa and 3 of exponent in 1984, with the floating-point support library for the Motorola 68040 processor providing a compatible 96-bit decimal floating-point storage format in 1990. [2]
This is a binary format that occupies 64 bits (8 bytes) and its significand has a precision of 53 bits (about 16 decimal digits). Double extended, also ambiguously called "extended precision" format. This is a binary format that occupies at least 79 bits (80 if the hidden/implicit bit rule is not used) and its significand has a precision of at ...