Search results
Results From The WOW.Com Content Network
Entropy is one of the few quantities in the physical sciences that require a particular direction for time, sometimes called an arrow of time. As one goes "forward" in time, the second law of thermodynamics says, the entropy of an isolated system can increase, but not decrease. Thus, entropy measurement is a way of distinguishing the past from ...
In cosmology, the past hypothesis is a fundamental law of physics that postulates that the universe started in a low-entropy state, [1] in accordance with the second law of thermodynamics. The second law states that any closed system follows the arrow of time, meaning its entropy never decreases. Applying this idea to the entire universe, the ...
The term entropy is often used in popular language to denote a variety of unrelated phenomena. One example is the concept of corporate entropy as put forward somewhat humorously by authors Tom DeMarco and Timothy Lister in their 1987 classic publication Peopleware, a book on growing and managing productive teams and successful software projects ...
Entropy is a scientific concept that is most commonly associated with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse ...
[1] [2] [3] The second law of thermodynamics establishes the concept of entropy as a physical property of a thermodynamic system. It predicts whether processes are forbidden despite obeying the requirement of conservation of energy as expressed in the first law of thermodynamics and provides necessary criteria for spontaneous processes. For ...
It is in this sense that entropy is a measure of the energy in a system that cannot be used to do work. An irreversible process degrades the performance of a thermodynamic system, designed to do work or produce cooling, and results in entropy production. The entropy generation during a reversible process is zero. Thus entropy production is a ...
The relationship between entropy, order, and disorder in the Boltzmann equation is so clear among physicists that according to the views of thermodynamic ecologists Sven Jorgensen and Yuri Svirezhev, "it is obvious that entropy is a measure of order or, most likely, disorder in the system."
In the 1928 book The Nature of the Physical World, which helped to popularize the concept, Eddington stated: . Let us draw an arrow arbitrarily. If as we follow the arrow we find more and more of the random element in the state of the world, then the arrow is pointing towards the future; if the random element decreases the arrow points towards the past.