Search results
Results From The WOW.Com Content Network
Linear motion, also called rectilinear motion, [1] is one-dimensional motion along a straight line, and can therefore be described mathematically using only one spatial dimension. The linear motion can be of two types: uniform linear motion , with constant velocity (zero acceleration ); and non-uniform linear motion , with variable velocity ...
Kinematics is used in astrophysics to describe the motion of celestial bodies and collections of such bodies. In mechanical engineering , robotics , and biomechanics , [ 7 ] kinematics is used to describe the motion of systems composed of joined parts (multi-link systems) such as an engine , a robotic arm or the human skeleton .
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
[Also known as rectilinear motion] Reciprocal motion; Brownian motion – the random movement of very small particles; Circular motion; Rotatory motion – a motion about a fixed point. (e.g. Ferris wheel). Curvilinear motion – It is defined as the motion along a curved path that may be planar or in three dimensions.
In physics and engineering, kinetics is the branch of classical mechanics that is concerned with the relationship between the motion and its causes, specifically, forces and torques. [ 1 ] [ 2 ] [ 3 ] Since the mid-20th century, the term " dynamics " (or " analytical dynamics ") has largely superseded "kinetics" in physics textbooks, [ 4 ...
As with classical mechanics, the subject can be divided into "kinematics"; the description of motion by specifying positions, velocities and accelerations, and "dynamics"; a full description by considering energies, momenta, and angular momenta and their conservation laws, and forces acting on particles or exerted by particles.
Jean d'Alembert (1717–1783). D'Alembert's principle, also known as the Lagrange–d'Alembert principle, is a statement of the fundamental classical laws of motion. It is named after its discoverer, the French physicist and mathematician Jean le Rond d'Alembert, and Italian-French mathematician Joseph Louis Lagrange.
From this point of view the kinematics equations can be used in two different ways. The first called forward kinematics uses specified values for the joint parameters to compute the end-effector position and orientation. The second called inverse kinematics uses the position and orientation of the end-effector to compute the joint parameters ...