When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Refractive index - Wikipedia

    en.wikipedia.org/wiki/Refractive_index

    The refractive index of materials varies with the wavelength (and frequency) of light. [27] This is called dispersion and causes prisms and rainbows to divide white light into its constituent spectral colors. [28] As the refractive index varies with wavelength, so will the refraction angle as light goes from one material to another.

  3. Sellmeier equation - Wikipedia

    en.wikipedia.org/wiki/Sellmeier_equation

    Refractive index vs. wavelength for BK7 glass, showing measured points (blue crosses) and the Sellmeier equation (red line) Same as the graph above, but with Cauchy's equation (blue line) for comparison. While Cauchy's equation (blue line) deviates significantly from the measured refractive indices outside of the visible region (which is shaded ...

  4. Material properties of diamond - Wikipedia

    en.wikipedia.org/wiki/Material_properties_of_diamond

    The refractive index of diamond (as measured via sodium light, 589.3 nm) is 2.417. Because it is cubic in structure, diamond is also isotropic. Its high dispersion of 0.044 (variation of refractive index across the visible spectrum) manifests in the perceptible fire of cut diamonds.

  5. List of refractive indices - Wikipedia

    en.wikipedia.org/wiki/List_of_refractive_indices

    Refraction at interface. Many materials have a well-characterized refractive index, but these indices often depend strongly upon the frequency of light, causing optical dispersion. Standard refractive index measurements are taken at the "yellow doublet" sodium D line, with a wavelength (λ) of 589 nanometers.

  6. Cauchy's equation - Wikipedia

    en.wikipedia.org/wiki/Cauchy's_equation

    where n is the refractive index, λ is the wavelength, A, B, C, etc., are coefficients that can be determined for a material by fitting the equation to measured refractive indices at known wavelengths. The coefficients are usually quoted for λ as the vacuum wavelength in micrometres. Usually, it is sufficient to use a two-term form of the ...

  7. Dispersion (optics) - Wikipedia

    en.wikipedia.org/wiki/Dispersion_(optics)

    The variation of refractive index vs. vacuum wavelength for various glasses. The wavelengths of visible light are shaded in grey. Influences of selected glass component additions on the mean dispersion of a specific base glass (n F valid for λ = 486 nm (blue), n C valid for λ = 656 nm (red)) [3]

  8. Abbe number - Wikipedia

    en.wikipedia.org/wiki/Abbe_number

    In optics and lens design, the Abbe number, also known as the Vd-number or constringence of a transparent material, is an approximate measure of the material's dispersion (change of refractive index versus wavelength), with high values of Vd indicating low dispersion.

  9. Refractometry - Wikipedia

    en.wikipedia.org/wiki/Refractometry

    A reference wavelength of 589.3 nm (the sodium D line) is most often used. Though RI is a dimensionless quantity, it is typically reported as nD20 (or n 20 D ), where the "n" represents refractive index, the "D" denotes the wavelength, and the 20 denotes the reference temperature. Therefore, the refractive index of water at 20 degrees Celsius ...