Ad
related to: entropy formula in information theory economics
Search results
Results From The WOW.Com Content Network
The inspiration for adopting the word entropy in information theory came from the close resemblance between Shannon's formula and very similar known formulae from statistical mechanics. In statistical thermodynamics the most general formula for the thermodynamic entropy S of a thermodynamic system is the Gibbs entropy
Despite the foregoing, there is a difference between the two quantities. The information entropy Η can be calculated for any probability distribution (if the "message" is taken to be that the event i which had probability p i occurred, out of the space of the events possible), while the thermodynamic entropy S refers to thermodynamic probabilities p i specifically.
The mathematical theory of information is based on probability theory and statistics, and measures information with several quantities of information. The choice of logarithmic base in the following formulae determines the unit of information entropy that is used.
Entropy is a scientific concept that is most commonly associated with a state of disorder, randomness, or uncertainty. The term and the concept are used in diverse fields, from classical thermodynamics, where it was first recognized, to the microscopic description of nature in statistical physics, and to the principles of information theory.
The principle of maximum entropy states that the probability distribution which best represents the current state of knowledge about a system is the one with largest entropy, in the context of precisely stated prior data (such as a proposition that expresses testable information).
The Theil index is a statistic primarily used to measure economic inequality [1] and other economic phenomena, though it has also been used to measure racial segregation. [2] [3] The Theil index T T is the same as redundancy in information theory which is the maximum possible entropy of the data minus the observed entropy.
In this context, either an information-theoretical measure, such as functional clusters (Gerald Edelman and Giulio Tononi's functional clustering model and dynamic core hypothesis (DCH) [47]) or effective information (Tononi's integrated information theory (IIT) of consciousness [48] [49] [50]), is defined (on the basis of a reentrant process ...
In information theory, the conditional entropy quantifies the amount of information needed to describe the outcome of a random variable given that the value of another random variable is known. Here, information is measured in shannons , nats , or hartleys .