When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Riemann hypothesis - Wikipedia

    en.wikipedia.org/wiki/Riemann_hypothesis

    Riemann knew that the non-trivial zeros of the zeta function were symmetrically distributed about the line s = 1/2 + it, and he knew that all of its non-trivial zeros must lie in the range 0 ≤ Re(s) ≤ 1. He checked that a few of the zeros lay on the critical line with real part 1/2 and suggested that they all do; this is the Riemann hypothesis.

  3. Particular values of the Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Particular_values_of_the...

    Zeros of the Riemann zeta except negative even integers are called "nontrivial zeros". The Riemann hypothesis states that the real part of every nontrivial zero must be ⁠ 1 / 2 ⁠. In other words, all known nontrivial zeros of the Riemann zeta are of the form z = ⁠ 1 / 2 ⁠ + yi where y is a real number.

  4. Riemann zeta function - Wikipedia

    en.wikipedia.org/wiki/Riemann_zeta_function

    The Riemann hypothesis, considered one of the greatest unsolved problems in mathematics, asserts that all non-trivial zeros are on the critical line. In 1989, Conrey proved that more than 40% of the non-trivial zeros of the Riemann zeta function are on the critical line. [9] For the Riemann zeta function on the critical line, see Z-function.

  5. Z function - Wikipedia

    en.wikipedia.org/wiki/Z_function

    Hence, the number of zeros in an interval of a given size slowly increases. If the Riemann hypothesis is true, all of the zeros in the critical strip are real zeros, and the constant c is one. It is also postulated that all of these zeros are simple zeros.

  6. Portal:Mathematics/Selected article/25 - Wikipedia

    en.wikipedia.org/wiki/Portal:Mathematics/...

    The Riemann zeta-function is defined for all complex numbers s ≠ 1. It has zeros at the negative even integers (i.e. at s=-2, s=-4, s=-6, ...). These are called the trivial zeros. The Riemann hypothesis is concerned with the non-trivial zeros, and states that: The real part of any non-trivial zero of the Riemann zeta function is ½

  7. List of zeta functions - Wikipedia

    en.wikipedia.org/wiki/List_of_zeta_functions

    In mathematics, a zeta function is (usually) a function analogous to the original example, the Riemann zeta function = =. Zeta functions include: Airy zeta function, related to the zeros of the Airy function; Arakawa–Kaneko zeta function; Arithmetic zeta function

  8. Riemann–von Mangoldt formula - Wikipedia

    en.wikipedia.org/wiki/Riemann–von_Mangoldt_formula

    In mathematics, the Riemann–von Mangoldt formula, named for Bernhard Riemann and Hans Carl Friedrich von Mangoldt, describes the distribution of the zeros of the Riemann zeta function. The formula states that the number N(T) of zeros of the zeta function with imaginary part greater than 0 and less than or equal to T satisfies

  9. Zeta distribution - Wikipedia

    en.wikipedia.org/wiki/Zeta_distribution

    where ζ(s) is the Riemann zeta function (which is undefined for s = 1). The multiplicities of distinct prime factors of X are independent random variables. The Riemann zeta function being the sum of all terms for positive integer k, it appears thus as the normalization of the Zipf distribution. The terms "Zipf distribution" and the "zeta ...