Ad
related to: fem method benefits
Search results
Results From The WOW.Com Content Network
Finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis , heat transfer , fluid flow , mass transport, and electromagnetic potential .
The finite element method (FEM) is a powerful technique originally developed for numerical solution of complex problems in structural mechanics, and it remains the method of choice for complex systems. In the FEM, the structural system is modeled by a set of appropriate finite elements interconnected at
The extended finite element method (XFEM) was developed in 1999 by Ted Belytschko and collaborators, [1] to help alleviate shortcomings of the finite element method and has been used to model the propagation of various discontinuities: strong and weak (material interfaces). The idea behind XFEM is to retain most advantages of meshfree methods ...
The goal of modal analysis in structural mechanics is to determine the natural mode shapes and frequencies of an object or structure during free vibration.It is common to use the finite element method (FEM) to perform this analysis because, like other calculations using the FEM, the object being analyzed can have arbitrary shape and the results of the calculations are acceptable.
It is a matrix method that makes use of the members' stiffness relations for computing member forces and displacements in structures. The direct stiffness method is the most common implementation of the finite element method (FEM). In applying the method, the system must be modeled as a set of simpler, idealized elements interconnected at the ...
The conventional topology optimization formulation uses a finite element method (FEM) to evaluate the design performance. The design is optimized using either gradient-based mathematical programming techniques such as the optimality criteria algorithm and the method of moving asymptotes or non gradient-based algorithms such as genetic algorithms.
The finite element method (FEM) is used in structural analysis of solids, but is also applicable to fluids. However, the FEM formulation requires special care to ensure a conservative solution. The FEM formulation has been adapted for use with fluid dynamics governing equations.
In mathematics, the discrete exterior calculus (DEC) is the extension of the exterior calculus to discrete spaces including graphs, finite element meshes, and lately also general polygonal meshes [1] (non-flat and non-convex). DEC methods have proved to be very powerful in improving and analyzing finite element methods: for instance, DEC-based ...