Search results
Results From The WOW.Com Content Network
Critical heat flux (CHF) describes the thermal limit of a phenomenon where a phase change occurs during heating (such as bubbles forming on a metal surface used to heat water), which suddenly decreases the efficiency of heat transfer, thus causing localised overheating of the heating surface. As the boiling surface is heated above a critical ...
Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes.
Latent heat is associated with the change of phase of atmospheric or ocean water, vaporization, condensation, freezing or melting, whereas sensible heat is energy transferred that is evident in change of the temperature of the atmosphere or ocean, or ice, without those phase changes, though it is associated with changes of pressure and volume.
The former occurs only if all parts are at the same temperature, but interphase heat transfer also occurs when the temperatures of the individual phases are different. If different phases of the same pure substance are present in a multiphase system, interphase heat transfer will result in a change of phase, which is always accompanied by ...
The classical Stefan problem aims to describe the evolution of the boundary between two phases of a material undergoing a phase change, for example the melting of a solid, such as ice to water. This is accomplished by solving heat equations in both regions, subject to given boundary and initial conditions. At the interface between the phases ...
Isotope fractionation occurs during a phase transition, the ratio of light to heavy isotopes in the involved molecules changes. When water vapor condenses (an equilibrium fractionation), the heavier water isotopes (18 O and 2 H) become enriched in the liquid phase while the lighter isotopes (16 O and 1 H) tend toward the vapor phase. [4]
Both sensible and latent heats are observed in many processes while transporting energy in nature. Latent heat is associated with changes of state, measured at constant temperature, especially the phase changes of atmospheric water vapor, mostly vaporization and condensation, whereas sensible heat directly affects the temperature of the atmosphere.
Many important engineered systems involve heat transfer. Some examples are the heating and cooling of process streams, phase changes, distillation, etc. The basic principle is the Fourier's law which is expressed as follows for a static system: ″ =