When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Enthalpy of fusion - Wikipedia

    en.wikipedia.org/wiki/Enthalpy_of_fusion

    Enthalpies of melting and boiling for pure elements versus temperatures of transition, demonstrating Trouton's rule. In thermodynamics, the enthalpy of fusion of a substance, also known as (latent) heat of fusion, is the change in its enthalpy resulting from providing energy, typically heat, to a specific quantity of the substance to change its state from a solid to a liquid, at constant pressure.

  3. Freezing - Wikipedia

    en.wikipedia.org/wiki/Freezing

    Freezing is a common method of food preservation that slows both food decay and the growth of micro-organisms. Besides the effect of lower temperatures on reaction rates, freezing makes water less available for bacteria growth. Freezing is a widely used method of food preservation. Freezing generally preserves flavours, smell and nutritional ...

  4. Melting - Wikipedia

    en.wikipedia.org/wiki/Melting

    Melting ice cubes illustrate the process of fusion. Melting, or fusion, is a physical process that results in the phase transition of a substance from a solid to a liquid. This occurs when the internal energy of the solid increases, typically by the application of heat or pressure, which increases the substance's temperature to the melting point.

  5. Melting point - Wikipedia

    en.wikipedia.org/wiki/Melting_point

    However, further heat needs to be supplied for the melting to take place: this is called the heat of fusion, and is an example of latent heat. [ 10 ] From a thermodynamics point of view, at the melting point the change in Gibbs free energy (ΔG) of the material is zero, but the enthalpy ( H ) and the entropy ( S ) of the material are increasing ...

  6. Properties of water - Wikipedia

    en.wikipedia.org/wiki/Properties_of_water

    The specific enthalpy of fusion (more commonly known as latent heat) of water is 333.55 kJ/kg at 0 °C: the same amount of energy is required to melt ice as to warm ice from −160 °C up to its melting point or to heat the same amount of water by about 80 °C. Of common substances, only that of ammonia is higher.

  7. Biological thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Biological_thermodynamics

    Biological thermodynamics (Thermodynamics of biological systems) is a science that explains the nature and general laws of thermodynamic processes occurring in living organisms as nonequilibrium thermodynamic systems that convert the energy of the Sun and food into other types of energy.

  8. Latent heat - Wikipedia

    en.wikipedia.org/wiki/Latent_heat

    Black next showed that a water temperature of 176 °F was needed to melt an equal mass of ice until it was all 32 °F. So now 176 – 32 = 144 “degrees of heat” seemed to be needed to melt the ice. The modern value for the heat of fusion of ice would be 143 “degrees of heat” on the same scale (79.5 “degrees of heat Celsius”). [18] [15]

  9. Entropy of fusion - Wikipedia

    en.wikipedia.org/wiki/Entropy_of_fusion

    In thermodynamics, the entropy of fusion is the increase in entropy when melting a solid substance. This is almost always positive since the degree of disorder increases in the transition from an organized crystalline solid to the disorganized structure of a liquid ; the only known exception is helium . [ 1 ]