Ads
related to: multiplication equations that equal 45
Search results
Results From The WOW.Com Content Network
However, the discriminant of this equation is positive, so this equation has three real roots (of which only one is the solution for the cosine of the one-third angle). None of these solutions are reducible to a real algebraic expression , as they use intermediate complex numbers under the cube roots .
The carry step of the multiplication can be performed at the final stage of the calculation (in bold), returning the final product of 45 × 256 = 11520. This is a variant of Lattice multiplication . The modern method of multiplication based on the Hindu–Arabic numeral system was first described by Brahmagupta .
In mathematics, a product is the result of multiplication, or an expression that identifies objects (numbers or variables) to be multiplied, called factors.For example, 21 is the product of 3 and 7 (the result of multiplication), and (+) is the product of and (+) (indicating that the two factors should be multiplied together).
Pre-multiplication or post-multiplication The same point P can be represented either by a column vector v or a row vector w. Rotation matrices can either pre-multiply column vectors (Rv), or post-multiply row vectors (wR). However, Rv produces a rotation in the opposite direction with respect to wR. Throughout this article, rotations produced ...
For example, 1.5 × 30 (which equals 45) will show the same result as 1 500 000 × 0.03 (which equals 45 000). This separate calculation forces the user to keep track of magnitude in short-term memory (which is error-prone), keep notes (which is cumbersome) or reason about it in every step (which distracts from the other calculation requirements).
This is a list of equations, by Wikipedia page under appropriate bands of their field. Eponymous equations The following equations are named after researchers who ...
To satisfy the last three equations, either a = 0 or b, c, and d are all 0. The latter is impossible because a is a real number and the first equation would imply that a 2 = −1. Therefore, a = 0 and b 2 + c 2 + d 2 = 1. In other words: A quaternion squares to −1 if and only if it is a vector quaternion with norm 1.
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.