Search results
Results From The WOW.Com Content Network
The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.
Logistic function for the mathematical model used in Population dynamics that adjusts growth rate based on how close it is to the maximum a system can support; Albert Allen Bartlett – a leading proponent of the Malthusian Growth Model; Exogenous growth model – related growth model from economics; Growth theory – related ideas from economics
This solution equation clearly demonstrates the two key features of chaos – stretching and folding: the factor 2 n shows the exponential growth of stretching, which results in sensitive dependence on initial conditions, while the squared sine function keeps x n folded within the range [0,1].
Biological exponential growth is the unrestricted growth of a population of organisms, occurring when resources in its habitat are unlimited. [1] Most commonly apparent in species that reproduce quickly and asexually , like bacteria , exponential growth is intuitive from the fact that each organism can divide and produce two copies of itself.
One of the most basic and milestone models of population growth was the logistic model of population growth formulated by Pierre François Verhulst in 1838. The logistic model takes the shape of a sigmoid curve and describes the growth of a population as exponential, followed by a decrease in growth, and bound by a carrying capacity due to ...
Asymptotically, bounded growth approaches a fixed value. This contrasts with exponential growth, which is constantly increasing at an accelerating rate, and therefore approaches infinity in the limit. Examples of bounded growth include the logistic function, the Gompertz function, and a simple modified exponential function like y = a + be gx. [1]
The form is similar to the Lotka–Volterra equations for predation in that the equation for each species has one term for self-interaction and one term for the interaction with other species. In the equations for predation, the base population model is exponential. For the competition equations, the logistic equation is the basis.
Often the independent variable is time. Described as a function, a quantity undergoing exponential growth is an exponential function of time, that is, the variable representing time is the exponent (in contrast to other types of growth, such as quadratic growth). Exponential growth is the inverse of logarithmic growth.