Search results
Results From The WOW.Com Content Network
Electromagnetic radiation is commonly referred to as "light", EM, EMR, or electromagnetic waves. [2] The position of an electromagnetic wave within the electromagnetic spectrum can be characterized by either its frequency of oscillation or its wavelength. Electromagnetic waves of different frequency are called by different names since they have ...
A diagram of the electromagnetic spectrum, showing various properties across the range of frequencies and wavelengths. The electromagnetic spectrum is the full range of electromagnetic radiation, organized by frequency or wavelength. The spectrum is divided into separate bands, with different names for the electromagnetic waves within each band.
Representation of the electric field vector of a wave of circularly polarized electromagnetic radiation. The electromagnetic force is the second strongest of the four known fundamental forces and has unlimited range. [17] All other forces, known as non-fundamental forces. [18] (e.g., friction, contact forces) are derived from the four ...
The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form:
The existence of electromagnetic radiation was proved by Heinrich Hertz in a series of experiments ranging from 1886 to 1889 in which he discovered the existence of radio waves. The full electromagnetic spectrum (in order of increasing frequency) consists of radio waves, microwaves, infrared radiation, visible light, ultraviolet light, X-rays ...
A linearly polarized electromagnetic plane wave propagating parallel to the z-axis is a possible solution for the electromagnetic wave equations in free space. The electric field, E, and the magnetic field, B, are perpendicular to each other and the direction of propagation. Maxwell's equations can be combined to derive wave equations.
In an electromagnetic wave (such as light), coupling between the electric and magnetic fields sustains propagation of waves involving these fields according to Maxwell's equations. Electromagnetic waves can travel through a vacuum and through some dielectric media (at wavelengths where they are considered transparent).
In plasma physics, an electromagnetic electron wave is a wave in a plasma which has a magnetic field component and in which primarily the electrons oscillate. In an unmagnetized plasma, an electromagnetic electron wave is simply a light wave modified by the plasma. In a magnetized plasma, there are two modes perpendicular to the field, the O ...