Search results
Results From The WOW.Com Content Network
A curve with a triple point at the origin: x(t) = sin(2t) + cos(t), y(t) = sin(t) + cos(2t) In general, if all the terms of degree less than k are 0, and at least one term of degree k is not 0 in f, then curve is said to have a multiple point of order k or a k-ple point.
The pinch point (in this case the origin) is a limit of normal crossings singular points (the -axis in this case). These singular points are intimately related in the sense that in order to resolve the pinch point singularity one must blow-up the whole v {\displaystyle v} -axis and not only the pinch point.
Points of V that are not singular are called non-singular or regular. It is always true that almost all points are non-singular, in the sense that the non-singular points form a set that is both open and dense in the variety (for the Zariski topology, as well as for the usual topology, in the case of varieties defined over the complex numbers). [1]
Point a is an ordinary point when functions p 1 (x) and p 0 (x) are analytic at x = a. Point a is a regular singular point if p 1 (x) has a pole up to order 1 at x = a and p 0 has a pole of order up to 2 at x = a. Otherwise point a is an irregular singular point.
A singular point of an implicit surface (in ) is a point of the surface where the implicit equation holds and the three partial derivatives of its defining function are all zero. Therefore, the singular points are the solutions of a system of four equations in three indeterminates. As most such systems have no solution, many surfaces do not ...
Khetarpal points to the Huangluo village in China, whose women are famous for their long hair. "Rice water is actually part of the regimen that this town attributes to their hair to get to that ...
Consider a smooth real-valued function of two variables, say f (x, y) where x and y are real numbers.So f is a function from the plane to the line. The space of all such smooth functions is acted upon by the group of diffeomorphisms of the plane and the diffeomorphisms of the line, i.e. diffeomorphic changes of coordinate in both the source and the target.
For more than two decades, Madison Vaughan has built a sweet relationship with her longtime mailman, Tim, highlighting the importance of community