Search results
Results From The WOW.Com Content Network
Isothermal transformation diagrams (also known as time-temperature-transformation (TTT) diagrams) are plots of temperature versus time (usually on a logarithmic scale). They are generated from percentage transformation-vs time measurements, and are useful for understanding the transformations of an alloy steel at elevated temperatures.
In carbon steel, for example, Widmanstätten structures form during tempering if the steel is held within a range around 500 °F (260 °C) for long periods of time. These structures form as a needle or plate-like growths of cementite within the crystal boundaries of the martensite. This increases the brittleness of the steel in a way that can ...
Time-temperature transformation (TTT) diagram for steel. The red curves represent different cooling rates (velocity) when cooled from the upper critical (A3) temperature. V1 (quenching) produces martensite. V2 (normalizing) produces both pearlite and martensite, V3 (annealing) produces bainite mixed with pearlite.
English: TTT diagram of the isothermal transformations of a hypoeutectoid carbon steel, together with its relationship with the Fe-C phase diagram of carbon steels. Without exact values, only for educational purposes.
[1] [3] Commercial use of bainitic steel thus came about as a result of the development of new heat-treating methods, with those that involve a step in which the workpiece is held at a fixed temperature for a period of time sufficient to allow transformation becoming collectively known as austempering.
The Fourier number can be derived by nondimensionalizing the time-dependent diffusion equation.As an example, consider a rod of length that is being heated from an initial temperature by imposing a heat source of temperature > at time = and position = (with along the axis of the rod).
The bird flu outbreak has taken concerning turns, with more than 60 human cases confirmed. Experts outlined four signs that the virus is going in the wrong direction.
Steel with a high carbon content will reach a much harder state than steel with a low carbon content. Likewise, tempering high-carbon steel to a certain temperature will produce steel that is considerably harder than low-carbon steel that is tempered at the same temperature. The amount of time held at the tempering temperature also has an effect.