Search results
Results From The WOW.Com Content Network
The memory color effect is the phenomenon that the canonical hue of a type of object acquired through experience (e.g. the sky, a leaf, or a strawberry) can directly modulate the appearance of the actual colors of objects. Human observers acquire memory colors through their experiences with instances of that type.
On the other hand, Peter A. Crisp and his colleagues proposed a different view on plant memory in their review: plant memory could be advantageous under recurring and predictable stress; however, resetting or forgetting about the brief period of stress may be more beneficial for plants to grow as soon as the desirable condition returns. [56]
Australian biologist Culum Brown has argued that fish may give the appearance of being less intelligent than they are due to differences between aquatic and terrestrial environments. [6] Fish hold records for the relative brain weights of vertebrates. Most vertebrate species have similar brain-to-body mass ratios.
The “spacing effect” refers to a phenomenon whereby learning, or the creation of a memory, occurs more effectively when information, or exposure to a stimulus, is spaced out.
Plant perception is the ability of plants to sense and respond to the environment by adjusting their morphology and physiology. [1] Botanical research has revealed that plants are capable of reacting to a broad range of stimuli, including chemicals, gravity, light, moisture, infections, temperature, oxygen and carbon dioxide concentrations, parasite infestation, disease, physical disruption ...
Close-up of fish melanophores. Fish coloration is produced through specialized cells called chromatophores. The dermal chromatophore is a basic color unit in amphibians, reptiles, and fish which has three cell layers: "the xanthophore (contains carotenoid and pteridine pigments), the iridophore (reflects color structurally), and the melanophore (contains melanin)". [5]
Chromatophores are cells that produce color, of which many types are pigment-containing cells, or groups of cells, found in a wide range of animals including amphibians, fish, reptiles, crustaceans and cephalopods. Mammals and birds, in contrast, have a class of cells called melanocytes for coloration.
These hair cells are embedded in a jelly-like protrusion called cupula. The hair cells therefore can not be seen and do not appear on the surface of skin. The receptors of the electrical sense are modified hair cells of the lateral line system. Fish and some aquatic amphibians detect hydrodynamic stimuli via a lateral line.