When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    However, there is a second definition of an irrational number used in constructive mathematics, that a real number is an irrational number if it is apart from every rational number, or equivalently, if the distance | | between and every rational number is positive. This definition is stronger than the traditional definition of an irrational number.

  3. Proof that π is irrational - Wikipedia

    en.wikipedia.org/wiki/Proof_that_π_is_irrational

    In the 1760s, Johann Heinrich Lambert was the first to prove that the number π is irrational, meaning it cannot be expressed as a fraction /, where and are both integers. In the 19th century, Charles Hermite found a proof that requires no prerequisite knowledge beyond basic calculus.

  4. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    The following famous example of a nonconstructive proof shows that there exist two irrational numbers a and b such that is a rational number. This proof uses that 2 {\displaystyle {\sqrt {2}}} is irrational (an easy proof is known since Euclid ), but not that 2 2 {\displaystyle {\sqrt {2}}^{\sqrt {2}}} is irrational (this is true, but the proof ...

  5. Constructive proof - Wikipedia

    en.wikipedia.org/wiki/Constructive_proof

    A constructive proof of the theorem that a power of an irrational number to an irrational exponent may be rational gives an actual example, such as: =, = ⁡, =. The square root of 2 is irrational, and 3 is rational.

  6. Square root of 2 - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_2

    While the proofs by infinite descent are constructively valid when "irrational" is defined to mean "not rational", we can obtain a constructively stronger statement by using a positive definition of "irrational" as "quantifiably apart from every rational". Let a and b be positive integers such that 1< ⁠ a / b ⁠ < 3/2 (as 1<2< 9/4 satisfies ...

  7. Proof that e is irrational - Wikipedia

    en.wikipedia.org/wiki/Proof_that_e_is_irrational

    In 1840, Liouville published a proof of the fact that e 2 is irrational [10] followed by a proof that e 2 is not a root of a second-degree polynomial with rational coefficients. [11] This last fact implies that e 4 is irrational. His proofs are similar to Fourier's proof of the irrationality of e.

  8. Rational number - Wikipedia

    en.wikipedia.org/wiki/Rational_number

    In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...

  9. Dirichlet function - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_function

    If y is irrational, then f(y) = 0. Again, we can take ε = 1 ⁄ 2, and this time, because the rational numbers are dense in the reals, we can pick z to be a rational number as close to y as is required. Again, f(z) = 1 is more than 1 ⁄ 2 away from f(y) = 0.