Search results
Results From The WOW.Com Content Network
2) In definition 15 he introduces parallel lines in this way; "Straight lines which have the same direction, but are not parts of the same straight line, are called parallel lines." Wilson (1868 , p. 12) Augustus De Morgan reviewed this text and declared it a failure, primarily on the basis of this definition and the way Wilson used it to prove ...
This postulate does not specifically talk about parallel lines; [1] it is only a postulate related to parallelism. Euclid gave the definition of parallel lines in Book I, Definition 23 [2] just before the five postulates. [3] Euclidean geometry is the study of geometry that satisfies all of Euclid's axioms, including the parallel postulate.
Parallel (geometry), two lines in the Euclidean plane which never intersect Parallel (operator) , mathematical operation named after the composition of electrical resistance in parallel circuits Science and engineering
In mathematics, affine geometry is what remains of Euclidean geometry when ignoring (mathematicians often say "forgetting" [1] [2]) the metric notions of distance and angle.. As the notion of parallel lines is one of the main properties that is independent of any metric, affine geometry is often considered as the study of parallel lines.
Parallel curves of the graph of = for distances =, …, Two definitions of a parallel curve: 1) envelope of a family of congruent circles, 2) by a fixed normal distance The parallel curves of a circle (red) are circles, too
Any of the three pairs of parallel faces can be viewed as the base planes of the prism. A parallelepiped has three sets of four parallel edges; the edges within each set are of equal length. Parallelepipeds result from linear transformations of a cube (for the non-degenerate cases: the bijective linear transformations).
Parallel transport of a vector around a closed loop (from A to N to B and back to A) on the sphere. The angle by which it twists, , is proportional to the area inside the loop. In differential geometry, parallel transport (or parallel translation [a]) is a way of transporting geometrical data along smooth curves in a manifold.
In classical physics, translational motion is movement that changes the position of an object, as opposed to rotation.For example, according to Whittaker: [1] If a body is moved from one position to another, and if the lines joining the initial and final points of each of the points of the body are a set of parallel straight lines of length ℓ, so that the orientation of the body in space is ...