Search results
Results From The WOW.Com Content Network
In elementary algebra, completing the square is a technique for converting a quadratic polynomial of the form + + to the form + for some values of and . [1] In terms of a new quantity x − h {\displaystyle x-h} , this expression is a quadratic polynomial with no linear term.
The central square has side b − a. The light gray region is the gnomon of area A = ab. The dark gray square (of side (b − a)/2) completes the gnomon to a square of side (b + a)/2. Adding (b − a)/2 to the horizontal dimension of the completed square and subtracting it from the vertical dimension produces the desired rectangle.
This method for completing the square is ancient and was known to the 8th–9th century Indian mathematician Śrīdhara. [12] Compared with the modern standard method for completing the square, this alternate method avoids fractions until the last step and hence does not require a rearrangement after step 3 to obtain a common denominator in the ...
The quadratic equation on a number can be solved using the well-known quadratic formula, which can be derived by completing the square. That formula always gives the roots of the quadratic equation, but the solutions are expressed in a form that often involves a quadratic irrational number, which is an algebraic fraction that can be evaluated ...
This "completes the square", converting the left side into a perfect square. Write the left side as a square and simplify the right side if necessary. Produce two linear equations by equating the square root of the left side with the positive and negative square roots of the right side. Solve each of the two linear equations.
This is also an application of completing the square, allowing us to write a quadratic polyomial of three variables in which all terms have degree two, as the sum of three squares. (My inspiration was a multivariate calculus problem: Create a tranformation to map the ellipsoid x 2 + 4 x y + 8 y 2 + 4 y z + 6 z 2 − 2 x z = 9 , {\displaystyle x ...
Completing_the_square.ogv (Ogg Theora video file, length 1 min 9 s, 640 × 480 pixels, 758 kbps, file size: 6.22 MB) This is a file from the Wikimedia Commons . Information from its description page there is shown below.
A typical use of this is the completing the square method for getting the quadratic formula. Another example is the factorization of x 4 + 1. {\displaystyle x^{4}+1.} If one introduces the non-real square root of –1 , commonly denoted i , then one has a difference of squares x 4 + 1 = ( x 2 + i ) ( x 2 − i ) . {\displaystyle x^{4}+1=(x^{2 ...