Search results
Results From The WOW.Com Content Network
The naming procedure for large numbers is based on taking the number n occurring in 10 3n+3 (short scale) or 10 6n (long scale) and concatenating Latin roots for its units, tens, and hundreds place, together with the suffix -illion. In this way, numbers up to 10 3·999+3 = 10 3000 (short scale) or 10 6·999 = 10 5994 (long scale
So too are the thousands, with the number of thousands followed by the word "thousand". The number one thousand may be written 1 000 or 1000 or 1,000; larger numbers are written for example 10 000 or 10,000 for ease of reading. European languages that use the comma as a decimal separator may correspondingly use the period as a thousands separator.
For example, class 5 is defined to include numbers between 10 10 10 10 6 and 10 10 10 10 10 6, which are numbers where X becomes humanly indistinguishable from X 2 [14] (taking iterated logarithms of such X yields indistinguishibility firstly between log(X) and 2log(X), secondly between log(log(X)) and 1+log(log(X)), and finally an extremely ...
Converts a given integer into a cardinal number or ordinal number in the English language. Anything between 10 126 and -10 126 is supported, as well as some larger numbers such as one centillion and one millinillion.
-yllion (pronounced / aɪ lj ən /) [1] is a proposal from Donald Knuth for the terminology and symbols of an alternate decimal superbase [clarification needed] system. In it, he adapts the familiar English terms for large numbers to provide a systematic set of names for much larger numbers.
A list of articles about numbers (not about numerals). Topics include powers of ten, notable integers, prime and cardinal numbers, and the myriad system.
For example, 1–4 may be the fingers, 5 'thumb', 6 'wrist', 7 'elbow', 8 'shoulder', etc., across the body and down the other arm, so that the opposite little finger represents a number between 17 (Torres Islands) to 23 . For numbers beyond this, the torso, legs and toes may be used, or one might count back up the other arm and back down the ...
By using a dot to divide the digits into two groups, one can also write fractions in the positional system. For example, the base 2 numeral 10.11 denotes 1×2 1 + 0×2 0 + 1×2 −1 + 1×2 −2 = 2.75. In general, numbers in the base b system are of the form: