Search results
Results From The WOW.Com Content Network
The two sides have the same value, expressed differently, since equality is symmetric. [1] More generally, these terms may apply to an inequation or inequality; the right-hand side is everything on the right side of a test operator in an expression, with LHS defined similarly.
The infinite series whose terms are the natural numbers 1 + 2 ... of the form of the series: the terms do ... 2 + 3 + 4 + ⋯. Then multiply this equation by 4 and ...
The boundary homomorphism is given by ∂D = 2C 1 and ∂C 1 = ∂C 2 = 0, yielding the homology groups of the Klein bottle K to be H 0 (K, Z) = Z, H 1 (K, Z) = Z×(Z/2Z) and H n (K, Z) = 0 for n > 1. There is a 2-1 covering map from the torus to the Klein bottle, because two copies of the fundamental region of the Klein bottle, one being ...
The discipline of origami or paper folding has received a considerable amount of mathematical study. Fields of interest include a given paper model's flat-foldability (whether the model can be flattened without damaging it), and the use of paper folds to solve mathematical equations up to the third order. [1]
A thin paper strip with its ends joined to form a Möbius strip can bend smoothly as a developable surface or be folded flat; the flattened Möbius strips include the trihexaflexagon. The Sudanese Möbius strip is a minimal surface in a hypersphere , and the Meeks Möbius strip is a self-intersecting minimal surface in ordinary Euclidean space.
In the particular case p = 1, this shows that L 1 is a Banach algebra under the convolution (and equality of the two sides holds if f and g are non-negative almost everywhere). More generally, Young's inequality implies that the convolution is a continuous bilinear map between suitable L p spaces.
Such polygons may have any number of sides greater than 1. Two-sided spherical polygons—lunes, also called digons or bi-angles—are bounded by two great-circle arcs: a familiar example is the curved outward-facing surface of a segment of an orange. Three arcs serve to define a spherical triangle, the principal subject of this article.
At 11+, Common Entrance consists of two English examinations, as well as an examination each in Mathematics and Science. [3]At 13+, Common Entrance consists of examinations in Mathematics (three papers: a (listening) mental mathematics paper, plus written non-calculator and calculator); English (two papers); and one paper each in Latin, Classical Greek, Geography, History, Religious Studies ...