When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Efferent arteriole - Wikipedia

    en.wikipedia.org/wiki/Efferent_arteriole

    The efferent arterioles form a convergence of the capillaries of the glomerulus, and carry blood away from the glomerulus that has already been filtered. They play an important role in maintaining the glomerular filtration rate despite fluctuations in blood pressure .

  3. Angiotensin - Wikipedia

    en.wikipedia.org/wiki/Angiotensin

    The effect on the efferent arteriolar resistance is, however, markedly greater, in part due to its smaller basal diameter; this tends to increase glomerular capillary hydrostatic pressure and maintain glomerular filtration rate. A number of other mechanisms can affect renal blood flow and GFR.

  4. Afferent arterioles - Wikipedia

    en.wikipedia.org/wiki/Afferent_arterioles

    When renal blood flow is reduced (indicating hypotension) or there is a decrease in sodium or chloride ion concentration, the macula densa of the distal tubule releases prostaglandins (mainly PGI2 and PGE2) and nitric oxide, which cause the juxtaglomerular cells lining the afferent arterioles to release renin, activating the renin–angiotensin–aldosterone system, to increase blood pressure ...

  5. Tubuloglomerular feedback - Wikipedia

    en.wikipedia.org/wiki/Tubuloglomerular_feedback

    As the TAL ascends through the renal cortex, it encounters its own glomerulus, bringing the macula densa to rest at the angle between the afferent and efferent arterioles. The macula densa's position enables it to rapidly alter afferent arteriolar resistance in response to changes in the flow rate through the distal nephron.

  6. Renin–angiotensin system - Wikipedia

    en.wikipedia.org/wiki/Renin–angiotensin_system

    In the kidneys, angiotensin II constricts glomerular arterioles, having a greater effect on efferent arterioles than afferent. As with most other capillary beds in the body, the constriction of afferent arterioles increases the arteriolar resistance, raising systemic arterial blood pressure and decreasing the blood flow. However, the kidneys ...

  7. Glomerulus (kidney) - Wikipedia

    en.wikipedia.org/wiki/Glomerulus_(kidney)

    The glomerulus receives its blood supply from an afferent arteriole of the renal arterial circulation. Unlike most capillary beds, the glomerular capillaries exit into efferent arterioles rather than venules. The resistance of the efferent arterioles causes sufficient hydrostatic pressure within the glomerulus to provide the force for ...

  8. Vascular resistance - Wikipedia

    en.wikipedia.org/wiki/Vascular_resistance

    The major determinant of vascular resistance is small arteriolar (known as resistance arterioles) tone. These vessels are from 450 μm down to 100 μm in diameter (as a comparison, the diameter of a capillary is about 5 to 10 μm). Another determinant of vascular resistance is the pre-capillary arterioles. These arterioles are less than 100 μm ...

  9. Assessment of kidney function - Wikipedia

    en.wikipedia.org/wiki/Assessment_of_kidney_function

    Central to the physiologic maintenance of GFR is the differential basal tone of the afferent and efferent arterioles (see diagram). In other words, the filtration rate is dependent on the difference between the higher blood pressure created by vasoconstriction of the input or afferent arteriole versus the lower blood pressure created by lesser ...