When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Residual neural network - Wikipedia

    en.wikipedia.org/wiki/Residual_neural_network

    A residual neural network (also referred to as a residual network or ResNet) [1] is a deep learning architecture in which the layers learn residual functions with reference to the layer inputs. It was developed in 2015 for image recognition , and won the ImageNet Large Scale Visual Recognition Challenge ( ILSVRC ) of that year.

  3. Neural network (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Neural_network_(machine...

    In 1982 a recurrent neural network, with an array architecture (rather than a multilayer perceptron architecture), named Crossbar Adaptive Array [65] [66] used direct recurrent connections from the output to the supervisor (teaching ) inputs. In addition of computing actions (decisions), it computed internal state evaluations (emotions) of the ...

  4. List of AMD CPU microarchitectures - Wikipedia

    en.wikipedia.org/wiki/List_of_AMD_CPU_micro...

    AMD Zen+ Family 17h – revised Zen architecture (optimisation and die shrink to 12 nm). AMD Zen 2 Family 17h – second generation Zen architecture based on 7 nm process, first architecture designed around chiplet technology. [3] AMD Zen 3 Family 19h – third generation Zen architecture in the optimised 7 nm process with major core redesigns. [4]

  5. Gated recurrent unit - Wikipedia

    en.wikipedia.org/wiki/Gated_recurrent_unit

    Gated recurrent units (GRUs) are a gating mechanism in recurrent neural networks, introduced in 2014 by Kyunghyun Cho et al. [1] The GRU is like a long short-term memory (LSTM) with a gating mechanism to input or forget certain features, [2] but lacks a context vector or output gate, resulting in fewer parameters than LSTM. [3]

  6. File:Resnet-18 architecture.svg - Wikipedia

    en.wikipedia.org/.../File:Resnet-18_architecture.svg

    You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made.

  7. Contrastive Language-Image Pre-training - Wikipedia

    en.wikipedia.org/wiki/Contrastive_Language-Image...

    [1]: 5 Its architecture is the same as GPT-2. [23] Like BERT, the text sequence is bracketed by two special tokens [SOS] and [EOS] ("start of sequence" and "end of sequence"). Take the activations of the highest layer of the transformer on the [EOS], apply LayerNorm, then a final linear map. This is the text encoding of the input sequence.

  8. Inception (deep learning architecture) - Wikipedia

    en.wikipedia.org/wiki/Inception_(deep_learning...

    The Inception v1 architecture is a deep CNN composed of 22 layers. Most of these layers were "Inception modules". The original paper stated that Inception modules are a "logical culmination" of Network in Network [5] and (Arora et al, 2014). [6] Since Inception v1 is deep, it suffered from the vanishing gradient problem.

  9. Highway network - Wikipedia

    en.wikipedia.org/wiki/Highway_network

    In machine learning, the Highway Network was the first working very deep feedforward neural network with hundreds of layers, much deeper than previous neural networks. [1] [2] [3] It uses skip connections modulated by learned gating mechanisms to regulate information flow, inspired by long short-term memory (LSTM) recurrent neural networks.