Search results
Results From The WOW.Com Content Network
Beginning of animal evolution. [54] [55] 720–630 Ma Possible global glaciation [56] [57] which increased the atmospheric oxygen and decreased carbon dioxide, and was either caused by land plant evolution [58] or resulted in it. [59] Opinion is divided on whether it increased or decreased biodiversity or the rate of evolution. [60] [61] [62 ...
A recently observed example has as protagonists M. xanthus (predator) and E. coli (prey) in which a parallel evolution of both species can be observed through genomic and phenotypic modifications, producing in future generations a better adaptation of one of the species that is counteracted by the evolution of the other, thus generating an arms ...
Convergent evolution—the repeated evolution of similar traits in multiple lineages which all ancestrally lack the trait—is rife in nature, as illustrated by the examples below. The ultimate cause of convergence is usually a similar evolutionary biome , as similar environments will select for similar traits in any species occupying the same ...
The extensive research about pathogens shows that they can evolve within a month, whereas animal hosts such as humans take centuries to make large evolutionary changes. [5] Parasite virulence and host resistance are variables that strongly impact a pathogen's ability to replicate and be distributed to many hosts.
The timeline of human evolution outlines the major events in the evolutionary lineage of the modern human species, Homo sapiens, throughout the history of life, beginning some 4 billion years ago down to recent evolution within H. sapiens during and since the Last Glacial Period.
The history of life on Earth traces the processes by which living and extinct organisms evolved, from the earliest emergence of life to the present day. Earth formed about 4.5 billion years ago (abbreviated as Ga, for gigaannum) and evidence suggests that life emerged prior to 3.7 Ga. [1] [2] [3] The similarities among all known present-day species indicate that they have diverged through the ...
The main subfields of evolutionary ecology are life history evolution, sociobiology (the evolution of social behavior), the evolution of interspecific interactions (e.g. cooperation, predator–prey interactions, parasitism, mutualism) and the evolution of biodiversity and of ecological communities.
Hosts and parasites exert reciprocal selective pressures on each other, which may lead to rapid reciprocal adaptation.For organisms with short generation times, host–parasite coevolution can be observed in comparatively small time periods, making it possible to study evolutionary change in real-time under both field and laboratory conditions.