Ads
related to: polynomial function degrees
Search results
Results From The WOW.Com Content Network
For polynomials in two or more variables, the degree of a term is the sum of the exponents of the variables in the term; the degree (sometimes called the total degree) of the polynomial is again the maximum of the degrees of all terms in the polynomial.
Polynomials of degree one, two or three are respectively linear polynomials, quadratic polynomials and cubic polynomials. [8] For higher degrees, the specific names are not commonly used, although quartic polynomial (for degree four) and quintic polynomial (for degree five) are sometimes used. The names for the degrees may be applied to the ...
A polynomial function is one that has the form = + + + + + where n is a non-negative integer that defines the degree of the polynomial. A polynomial with a degree of 0 is simply a constant function; with a degree of 1 is a line; with a degree of 2 is a quadratic; with a degree of 3 is a cubic, and so on.
In mathematics, a quadratic function of a single variable is a function of the form [1] = + +,,where is its variable, and , , and are coefficients.The expression + + , especially when treated as an object in itself rather than as a function, is a quadratic polynomial, a polynomial of degree two.
Graph of a polynomial of degree 4, with 3 critical points and four real roots (crossings of the x axis) (and thus no complex roots). If one or the other of the local minima were above the x axis, or if the local maximum were below it, or if there were no local maximum and one minimum below the x axis, there would only be two real roots (and two complex roots).
A cubic function with real coefficients has either one or three real roots (which may not be distinct); [1] all odd-degree polynomials with real coefficients have at least one real root. The graph of a cubic function always has a single inflection point. It may have two critical points, a local minimum and a local maximum.
the degree of a polynomial, that is, the largest exponent (for a univariate polynomial) or the largest sum of exponents (for a multivariate polynomial) in any of its monomials; the multiplicative order, that is, the number of times the polynomial is divisible by some value;
To characterize solvable quintics, and more generally solvable polynomials of higher degree, Évariste Galois developed techniques which gave rise to group theory and Galois theory. Applying these techniques, Arthur Cayley found a general criterion for determining whether any given quintic is solvable. [2] This criterion is the following. [3]