Ad
related to: ohm's law calculator pdf free
Search results
Results From The WOW.Com Content Network
The two resistors follow Ohm's law: The plot is a straight line through the origin. The other two devices do not follow Ohm's law. There are, however, components of electrical circuits which do not obey Ohm's law; that is, their relationship between current and voltage (their I–V curve) is nonlinear (or non-ohmic).
A Magic Triangle image mnemonic - when the terms of Ohm's law are arranged in this configuration, covering the unknown gives the formula in terms of the remaining parameters. It can be adapted to similar equations e.g. F = ma, v = fλ, E = mcΔT, V = π r 2 h and τ = rF sinθ.
Source transformations are easy to compute using Ohm's law. If there is a voltage source in series with an impedance, it is possible to find the value of the equivalent current source in parallel with the impedance by dividing the value of the voltage source by the value of the impedance. The converse also holds: if a current source in parallel ...
Ohm's law is satisfied when the graph is a straight line through the origin. Therefore, the two resistors are ohmic, but the diode and battery are not. For many materials, the current I through the material is proportional to the voltage V applied across it: over a wide range of voltages and currents. Therefore, the resistance and conductance ...
A matrix version of Kirchhoff's current law is the basis of most circuit simulation software, such as SPICE. The current law is used with Ohm's law to perform nodal analysis. The current law is applicable to any lumped network irrespective of the nature of the network; whether unilateral or bilateral, active or passive, linear or non-linear.
The formula is a combination of Ohm's law and Joule's law: = = =, where P is the power, R is the resistance, V is the voltage across the resistor, and I is the current through the resistor. A linear resistor has a constant resistance value over all applied voltages or currents; many practical resistors are linear over a useful range of currents.
Ohm's law can be used to determine the DC voltage drop by multiplying current times resistance: V = I R.Also, Kirchhoff's circuit laws state that in any DC circuit, the sum of the voltage drops across each component of the circuit is equal to the supply voltage.
Thus Ohm's law can be explained in terms of drift velocity. The law's most elementary expression is: =, where u is drift velocity, μ is the material's electron mobility, and E is the electric field. In the MKS system, drift velocity has units of m/s, electron mobility, m 2 /(V·s), and electric field, V/m.