Ad
related to: supercritical fluid density
Search results
Results From The WOW.Com Content Network
Near the critical point, small changes in pressure or temperature result in large changes in density, allowing many properties of a supercritical fluid to be "fine-tuned". Supercritical fluids occur in the atmospheres of the gas giants Jupiter and Saturn, the terrestrial planet Venus, and probably in those of the ice giants Uranus and Neptune.
More specifically, it behaves as a supercritical fluid above its critical temperature (304.128 K, 30.9780 °C, 87.7604 °F) [1] and critical pressure (7.3773 MPa, 72.808 atm, 1,070.0 psi, 73.773 bar), [1] expanding to fill its container like a gas but with a density like that of a liquid. Supercritical CO
The supercritical solvent is passed into a vessel at lower pressure than the extraction vessel. The density, and hence dissolving power, of supercritical fluids varies sharply with pressure, and hence the solubility in the lower density CO 2 is much lower, and the material precipitates for collection. It is possible to fractionate the dissolved ...
It is called supercritical fluid. The common textbook knowledge that all distinction between liquid and vapor disappears beyond the critical point has been challenged by Fisher and Widom, [8] who identified a p–T line that separates states with different asymptotic statistical properties (Fisher–Widom line).
Carbon dioxide behaves as a supercritical fluid above its critical temperature (304.13 K, 31.0 °C, 87.8 °F) and critical pressure (7.3773 MPa, 72.8 atm, 1,070 psi, 73.8 bar), expanding to fill its container like a gas but with a density like that of a liquid. [2]
Supercritical water oxidation (SCWO) is a process that occurs in water at temperatures and pressures above a mixture's thermodynamic critical point. Under these conditions water becomes a fluid with unique properties that can be used to advantage in the destruction of recalcitrant and hazardous wastes such as polychlorinated biphenyls (PCB) or ...
Liquid helium is a physical state of helium at very low temperatures at standard atmospheric pressures.Liquid helium may show superfluidity.. At standard pressure, the chemical element helium exists in a liquid form only at the extremely low temperature of −269 °C (−452.20 °F; 4.15 K).
Supercritical fluid chromatography (SFC) [1] is a form of normal phase chromatography that uses a supercritical fluid such as carbon dioxide as the mobile phase. [2] [3] It is used for the analysis and purification of low to moderate molecular weight, thermally labile molecules and can also be used for the separation of chiral compounds.